Swarm Intelligence: Distributed Problem Solving Inspired by Collective Behavior of Insects and other Natural Multi-Agent Systems

Dr. Vincent Cicirello Stockton College of NJ

Outline

• What is Swarm Intelligence?

- Self-organization and Social Insects
 - Self-synchronization
 - Collective building
 - Foraging ants
- Inspiration for problem solving tools
 - Ant Colony Optimization
 - Wasp-inspired Task Allocation

Conclusion

What is Swarm Intelligence?

- Branch of artificial intelligence that takes problem solving inspiration from natural multi-agent systems
- Largely inspired by mathematical models of the behavior of social insects

• Key Ideas:

- Very simple computational agents
- Individually "dumb"
- Indirect communication via changes in environment
- Positive reinforcement
- Means of "forgetting"
- "Intelligence" through collective behavior

Social Insects

Defining properties of eusociality:

- Reproductive division of labor
- Overlapping generations
- Sterile castes
- E.g., reproductive queens and sterile workers
- Social Insects
 - Ants
 - Termites
 - Bees¹
 - Wasps¹
- Individuals possess little intelligence
- Simplicity of individual behavior
- Collective behavior of colony complex
- How is it governed? By whom?

1. Not all species of wasps and bees are social, some are solitary insects.

Self-Organization Governed by Stigmergy

Stigmergy (term introduced by Grassé):

- From the Greek stigma (sting) and ergon (work)
- An environmental stimuli induces a behavioral response
- Term typically used to refer to indirect communication via changes in the environment
- o Examples:
 - Ants leave pheromone (chemical) trails... other ants follow these trails
 - Ants carrying dead ants more likely to drop them next to other dead ants (forming cemeteries)

Simulating the Biological Processes

- Mathematics involved usually includes:
 - Probability and Statistics
 - Calculus
 - Discrete math
 - Differential equations and difference equations
- Time typically simulated in discrete intervals
- Grid world used to represent the physical world

- Grid cells have properties:
 - Number of insects that can be located there
 - Quantity of food located there
 - Quantity and type of pheromone (chemical left by insects) located there

Outline

o What is Swarm Intelligence?

Self-organization and Social Insects

- Self-synchronization
- Collective building
- Foraging ants

Inspiration for problem solving tools

- Ant Colony Optimization
- Wasp-inspired Task Allocation

Conclusion

Self-Synchronizing Systems

- Cricket chirping
 Horses galloping
 People clapping
- Two pendulum clocks suspended from the same frame
 - Swing at same frequency
 - 180° out of phase
 - According to the Dutch physicist Christiaan Huygens (1665) the inventor of the pendulum clock

Firefly Synchronization

- Pteroptyx Cribellata, from
 Philippines and New Guinea
- Aggregate in large numbers and flash in unison
- Individually each follows its own rhythm
- Flashes by others stimulate individuals to flash sooner
- Effect is cumulative

Fire Flies Simulation

Collective Building by Insects

Termite Nest Building (Kugler et al. 1990)

Termites construct hills (> 5m high, >10 tons)

- Multiple floors
- Intricate networks of passageways
- Dedicated "climate controlled" chambers to:
 - o store food,
 - raise the brood,
 - house the population

o ...and there's not a supervisor among them!

Basic Idea

- Completed work is a guide for future work
 - If all builders removed from the site
 - And new population introduced
 - They will continue exactly as original team would

The Queen and Pheromone Diffusion

- The queen emits a pheromone that diffuses
- A worker deposits a soil pellet if the concentration of the pheromone is just right
- Wax dummy queen does not stimulate construction

Termite Pillar Construction

- Early deposits attract later ones, yielding concentrations
- Newest (strongest)
 Pheromones on top lead to columns
- Competition among columns promotes even spacing
- Nearby columns lean toward one another, building arches
- Multiple arches contact to form floors

As a Result

- Termite mounds
- Up to 20' tall
- Up to 6' diameter at base
- Up to 120' below ground
- Exceeds any human structure if measured in body length or weight

Foraging in Army Ants

- Two parts:
 - Pheromone laying
 - $\circ~$ While returning with food
 - Pheromone following
 - Always attempt to follow the trail
- o Pheromone
 - Evaporates
 - Diffuses
 - Pheromone deposits on trail sum
 - Some lab measurements suggest half-life of 45 min
 - But can persist for months

The Double Bridge Experiment

- Initially no pheromone
- Choice of branch is random
- Pheromone left by ants returning from food source
- One branch is eventually chosen by a few more ants
- It becomes more attractive
- Ants increasingly drawn to it
- Colony converges on it
- All (most) ants use that path

Double Bridge Experiment: Unequal Paths

- Ants will return faster over the shorter edge
- Other ants are then more likely to follow shorter edge
- What if that edge is introduced later?

Food Selection

Chemical trail following is not preciseIs it a problem?

Food Selection

- Chemical trail following is not precise
- Some ants will lose trail and wander
- They may discover new food sources
- Recruit others via pheromone trail
- Richer food source = more pheromone
- Nearby, rich source can make colony switch

Behavioral Model

- Probabilistic trail following out
- Pheromone laid in both directions
- Evaporation
- Move left with prob. $p = \frac{(5+\rho_l)^2}{(5+\rho_l)^2 + (5+\rho_r)^2}$
- Congestion
 - Move to neighboring cell
 - Wait until space is free, if all cells are congested

Foraging Ants Movie

Outline

• What is Swarm Intelligence?

Self-organization and Social Insects

- Self-synchronization
- Collective building
- Foraging ants

Inspiration for problem solving tools

- Ant Colony Optimization
- Wasp-inspired Task Allocation

Conclusion

Ant Colony Optimization (ACO)

• First introduced for shortest route problems

• E.g., the traveling salesperson problem (TSP)

• Key concepts:

- Population of artificial ants
- Probabilistically build a solution following artificial pheromone
- Reinforce pheromone trail according to quality of found solution (positive feedback)
- Evaporate the pheromone to avoid search stagnation (negative feedback)
- Time scale number of runs is also critical.

ACO Example: Traveling Sales Ants

Ant System (AS): The first ACO algorithm

Transition from city i to j depends on:

- "Tabu list" list of visited cities
- Heuristic, η_{ij} , local desirability to visit city *j* when at city *i* is (for TSP $\eta_{ij} = 1/d_{ij}$)
- Artificial pheromone trail \(\tau_{ij}(t)\)- represents the learned, desirability of visiting city \(j\) from city \(i\)
- Generally, have several "ants" searching the solution space.

Ant System (AS)

- Transition rule is a combination of heuristic and pheromone trail
- Probability of ant k going from city i to j:

$$p_{ij}^{k}(t) = \frac{\left[\tau_{ij}(t)\right]^{\alpha} \left[\eta_{ij}\right]^{\beta}}{\sum_{\ell \in J_{i}^{k}} \left[\tau_{il}(t)\right]^{\alpha} \left[\eta_{il}\right]^{\beta}}$$

- Alpha and beta are adjustable parameters
 - a= 0 : represents a greedy approach
 - $\beta = 0$: represents rapid selection of tours that may not be optimal.

Ant System (AS)

• Pheromone update :

$$\Delta \tau_{ij}^{k} = \begin{cases} Q/L^{k}(t) & \text{if } (i,j) \in T^{k}(t) \\ 0 & \text{otherwise} \end{cases}$$

 T is the tour made at time t by ant k, L is the length, Q is a parameter.

• Pheromone decay:

$$\tau_{ij}(t+1) = (1-\rho) \cdot \tau_{ij}(t) + \Delta \tau_{ij}(t)$$

Dynamic ACO Movie

Wasp Task Differentiation (Theraulaz et al. 1991)

- Wasps in a nest divide into:
 - Foragers who hunt for food,
 - Nurses who care for the brood.

- The relative proportion of Foragers and Nurses varies with the demand
- ...but no wasp explicitly computes the demand.

Division of Labor

Morphological

- Inherent physical properties of individuals
- o Temporal
 - The time of day, year, age
- o Behavioral
 - Specialize/adapt to allocated tasks

Fixed Threshold model

- Each task produces a stimulus
- Each ant has a "response" threshold
- If it is exceeded, the ant starts performing the task
- Just like a dirty coffee pot in the office
- Can be tied to ant morphology

Time Based Thresholds

Older bees/ants forage more
Thresholds can change

- Age of bee
- Time of day
- Time of year

Adjustable Thresholds

Polist Wasps

- Small colonies
- No differences
- Capable of performing any task
- As wasp works on a task:
 - Associated threshold is lowered
 - All others are raised
- Promotes specialization but keeps it flexible

Wasp Task Allocation for Vehicle Paint Booth Scheduling

Response Threshold Updates

• While painting (or switching to) color j $\theta_{w,j} = \theta_{w,j} - \delta_1$ • While painting (or switching to) color other than j $\theta_{w,j} = \theta_{w,j} - \delta_1$

$$\theta_{w,j} = \theta_{w,j} + \delta_2$$

While idle for all colors j

$$\theta_{w,j} = \theta_{w,j} - \delta_3$$

Outline

• What is Swarm Intelligence?

- Self-organization and Social Insects
 - Self-synchronization
 - Collective building
 - Foraging ants
- Inspiration for problem solving tools
 - Ant Colony Optimization
 - Wasp-inspired Task Allocation

• Conclusion

Much to learn from the natural world

- Social insects coordinate to solve complex problems with very simple coordination methods and minimal communication.
- What can we learn from nature?
- Biologists in their studies have produced mathematical models:
 - To simulate the biological systems
 - To test their hypotheses about the biology

Much to learn from the natural world

- Biotracking Project
- Group at Georgia Tech
- Lead: Tucker Balch
- Focusing on:
 - Automatically tracking biological entities in video
 - Automatically identifying behavioral patterns
 - What can we learn that can be applied to robotic systems?

Much to learn from the natural world

- Computer scientists have taken inspiration in developing problem solving systems
- Ant Colony Optimization has been applied to:
 - TSP
 - Scheduling
 - Network routing
 - Graph coloring
 - Many many other combinatorial optimization problems
- Many other swarm-inspired tools:
 - Particle Swarm Optimization
 - Resource allocation inspired by wasps
 - Multi-robot coordination inspired by ants, wasps, bees, etc
 - Many many others

EXTRA SLIDES FOLLOW

Ant Colony System (ACS)

- Modifications to AS with new transition rule: $j = \begin{cases} \max_{u \in J_k^i} \left\{ \left[\tau_{ij}(t) \right] \cdot \left[\eta_{iu} \right]^{\beta} \right\}, & \text{if } q \leq q_o \\ j' \in J_k^i, & \text{if } q > q_o \end{cases}$
 - j' is a city randomly selected according to the probabilistic rule of the Ant System
 - q_o is a parameter between 0 and 1
 - This helps ACS to improvise on the best solutions

Ant Colony System (ACS)

• Pheromone update rule (new): $\tau_{ij}(t) = (1-\rho) \cdot \tau_{ij}(t) + \rho \cdot \Delta \tau_{ij}(t)$ • Only applied to the best ant. • The change in the pheromone: $\Delta \tau_{ij} = \frac{1}{L}$ • (*i*,*j*) edges of the best tour • ρ parameter governs pheromone decay • *L* length of the best tour

- Local update rule
 - *L_{nn}* length of the nearest neighbor tour

$$\tau_{ij}(t) = (1-\rho) \cdot \tau_{ij}(t) + \frac{\rho}{n \cdot L_{nn}}$$

Ant Colony System (ACS)

Other methods for improvement

- Use a local search method in conjunction with ACS-TSP.
- Elitism, worst tours (pheromone removed), local search enhancement.
- Has been shown to be comparable to the best techniques available