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Spatial Reasoning

<—_Immovable 4
//Obstacles
@V <f V fﬂ ~

7

Start
Configuration

Can’t we use our previous methods?
Discrete Search? — Not a discrete problem
CSP? — Not a natural CSP formulation
Probabilistic? — Nope.

Goal Configuration
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Robots

For our purposes, a robot is:

A set of moving rigid objects called LINKS which are connected by
JOINTS.

Typically, joints are
REVOLUTE or PRISMATIC.

. Such joints each give one
A DEGREE OF FREEDOM.

AT

Fie 11, Fwocwrs of che W-BDOE monipslacar.

Given p DOFs, the configuration of the robot can be represented by p
values g = (g, g, ---d,) where q; is the angle or length of the I'th joint
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Free-Flying Polygons

If part of the robot is fixed in the world, the joints are all the DOFs
you're getting. But if the robot can be free-flying we get more DOFs.

May move in x
direction or y
direction

B\ Fixed “ J

0 DOFs 2 DOFs

& y dir and may
rotate

= =

3 DOFs Slide 4
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Examples

© How many DOFs?
®
Fixed =

Free flying

. ©) How many DOFs?
Midline mmm must

?.. always be horizontal.

How many DOFs?

The configuration g has one real valued entry per DOF.
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Robot Motion Planning

An important, interesting, spatial reasoning problem.

_et A be a robot with p degrees of freedom,
Iving in a 2-D or 3-D world.

_et B be a set of obstacles in this 2-D or 3-D
world.

Call a configuration LEGAL if it neither intersects
any obstacles nor self-intersects.

Given an initial configuration g, and a goal
config g0, generate a continuous path of legal
configurations between them, or report failure if
no such path exists.

Slide 6



Configuration Space

|s the set of legal configurations of the robot.
It also defines the topology of continuous
motions

For rigid-object robots (no joints) there exists
a transformation to the robot and obstacles

that turns the robot into a single point. The
C-Space Transform
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Configuration Space Transform

D World
O

Examples ;oo




Configuration Space Transform

2-D World

Examples ;oo

Where can | move
this point in the
vicinity of this
expanded
obstacle?

Where can | move
this robot in the
vicinity of this
obstacle?

...IS

> equivalent<
to...

nssuming you're - yF

not allowed to
rota‘te Slide 9



Configuration Space Transform Examples

We’ve turned the problem from “Twist and turn this 2-D polygon past this
other 2-D polygon” into “Find a path for this point in 3-D space past this weird
3-D obstacle”.

Why’s this transform useful?

Because we can plan paths for points instead of polyhedra/polygons
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Robot Motion Planning Research

...Has produced four kinds of algorithms. The first is the
Visibility Graph.
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Visibility Graph

Suppose someone gives you a CSPACE with polygonal obstacles

qgoal

If there were no blocks,
shortest path would be
a straight line.

Else it must be a
sequence of straight
lines “shaving” corners
of obstacles.

Obvious, but very
awkward to prove
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Visibility Graph Algorithm

qgoal

Find all non-blocked
lines between
polygon vertices,
start and goal.
Search the graph of
these lines for the
shortest path.
(Guess best search
algorithm?)




Visibility Graph Methoc

 Visibility graph method finds the shortest path.

e But it does so by skirting along and close to
obstacles.

* Any error in control, or model of obstacle
locations, and Bang! Screech!!

Who cares about optimality?

Perhaps we want to get a non-stupid path that
steers as far from the obstacles as it can.
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Voronol Diagrams
‘ Y

G B

Someone gives you some dots. Each dot is a different
color.

You color in the whole of 2-D space according to this rule:

“The color of any given point equals the color of the
nearest dot.”

The borders between your different regions are a VORNOI
DIAGRAM.

For n point in 2-D space the exact Voronoi diagram can be computed in time

O(n log n).
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Voronol Diagram from Polygons
iInstead of Points




Voronol Diagram Methods for C-
Space Motion Planning

Compute the Voronoi Diagram of C-space.

Compute shortest straightline path from
start to any point on Voronol Diagram.

Compute shortest straightline path from
goal to any point on Voronoi Diagram.

Compute shortest path from start to goal
along Voronoi Diagram.
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Voronol Diagr=2s

* Assumes polygons, and very complex above 2-D.

Answer: very nifty approximate algorithms (see Howie
Choset’s work http://voronoi.sbp.ri.cmu.edu/~choset)

e This “use Voronoi to keep clear of obstacles” is just a
heuristic. And can be made to look stupid:

D\

Can you see
how?
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* Assumes polygons, and very complex above 2-D.

Voronol Diagr=2s

Answer: very nifty approximate algorithms (see Howie
Choset’s work http://voronoi.sbp.ri.cmu.edu/~choset)

e This “use Voronoi to keep clear of obstacles” is just a
heuristic. And can be made to look stupid:
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Cell Decomposition Methods

Cell Decomp Method One: Exact Decomp
* Break free space into convex exact polygons.

...But this is also impractical above 2-D or with non-polygons. Slide 20



Approximate Cell Decomposition

S

 Lay down a grid
* Avoid any cell which intersects an obstacle
* Plan shortest path through other cells (e.g. with A*)
If no path exists, double the resolution and try again. Keep trying!!
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Variable Resolution “Approximate and Decompose”
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Variable Resolution “Approximate and Decompose”
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Approximate Cell Dion

d Not so many complaints. This is actually
used In practical systems.

But
0 Not exact (no notion of “best” path)

0 Not complete: doesn’t know If problem
actually unsolvable

o Still hopeless above a small number of
dimensions?
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Potential Methods

Defineafunction u(q)

u: Configurations — [

Such that
u - huge asyoumovetowardsan obstacle
u —» small asyoumovetowardsthegoal

Write dg(q) =distancefromqtoggoa

d (qj = distancefrom g to nearest obstacle

Onedefinitionof u: u(g)=d,(a)-d,(q)

— 1 > 1
P : -5 P
referred definition u(q) > E (dg(CI)) +2’7 d (q)z

SIMPLE MOTION
PLANNER: Steepest

Descenton u
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Potential
Field
Example




Solution I:

Use special local-minimum-free potential fields (Laplace
equations can do this) — But very expensive to compute

Solution IlI:

When at a local minimum start doing some searching

- example soon Siide 27



Comparison

Cowenta gEE;Or:p Voronoi | Visibility
Practical above 2 or 3 D? @_9 @_9
Practical above 8 D? @_9
Fast to Compute? @_9 @_9 In 2-d
Usable Online? @_9 ?E? fg?/?
Gives Optimal? In 2-d
Spots Impossibilities? @_9 @

@ @@?

Easy to Implement?

Slide 28



