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Spatial Reasoning

Can’t we use our previous methods?
Discrete Search? – Not a discrete problem
CSP? – Not a natural CSP formulation
Probabilistic? – Nope.

Start 
Configuration

Immovable 
Obstacles

Goal Configuration
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Robots
For our purposes, a robot is: 

A set of moving rigid objects called LINKS which are connected by 
JOINTS.

Typically, joints are 
REVOLUTE or PRISMATIC.

Such joints each give one 
DEGREE OF FREEDOM.

Given p DOFs, the configuration of the robot can be represented by p
values q = (q1 q2 ···qp) where qi is the angle or length of the i’th joint



Slide 4

Free-Flying Polygons
If part of the robot is fixed in the world, the joints are all the DOFs 
you’re getting.  But if the robot can be free-flying we get more DOFs.

Fixed

May move in x
direction or y
direction

May move in x
& y dir and may 
rotate

0 DOFs 2 DOFs

3 DOFs
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Examples

The configuration q has one real valued entry per DOF.
~

·
·

··
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Fixed

How many DOFs?

Free flying

How many DOFs?

Midline ■■■ must 
always be horizontal.

How many DOFs?
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Robot Motion Planning
An important, interesting, spatial reasoning problem.

• Let A be a robot with p degrees of freedom, 
living in a 2-D or 3-D world.

• Let B be a set of obstacles in this 2-D or 3-D 
world.

• Call a configuration LEGAL if it neither intersects 
any obstacles nor self-intersects.

• Given an initial configuration qstart and a goal 
config qgoal, generate a continuous path of legal 
configurations between them, or report failure if 
no such path exists.

~

~
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Configuration Space

Is the set of legal configurations of the robot.  
It also defines the topology of continuous 
motions

For rigid-object robots (no joints) there exists 
a transformation to the robot and obstacles 
that turns the robot into a single point.  The 

C-Space Transform
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Configuration Space Transform 
Examples 2-D World

2 DOFs

Where can I move 
this robot in the 
vicinity of this 

obstacle? …is 
equivalent 
to…

Where can I move 
this point in the 
vicinity of this 

expanded 
obstacle?
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Configuration Space Transform 
Examples 2-D World

2 DOFs

Where can I move 
this robot in the 
vicinity of this 

obstacle? …is 
equivalent 
to…

Where can I move 
this point in the 
vicinity of this 

expanded 
obstacle?

Assuming you’re 
not allowed to 
rotate
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Configuration Space Transform Examples
2-D World
3 DOFs

We’ve turned the problem from “Twist and turn this 2-D polygon past this 
other 2-D polygon” into “Find a path for this point in 3-D space past this weird 
3-D obstacle”.

Why’s this transform useful?

Because we can plan paths for points instead of polyhedra/polygons
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Robot Motion Planning Research
…Has produced four kinds of algorithms.  The first is the 
Visibility Graph.
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Visibility Graph
Suppose someone gives you a CSPACE with polygonal obstacles

If there were no blocks, 
shortest path would be 
a straight line.

Else it must be a 
sequence of straight 
lines “shaving” corners 
of obstacles.qstart

qgoal

Obvious, but very 
awkward to prove
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Visibility Graph Algorithm

1. Find all non-blocked 
lines between 
polygon vertices, 
start and goal.

2. Search the graph of 
these lines for the 
shortest path.  
(Guess best search 
algorithm?)

qstart

qgoal

If there are n vertices, 

the easy algorithm is 

O(n3).  Slightly 

tougher O(n2 logn).  

O(n2) in theory.
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• Visibility graph method finds the shortest path.

• But it does so by skirting along and close to 
obstacles.

• Any error in control, or model of obstacle 
locations, and Bang!  Screech!!

Who cares about optimality?
Perhaps we want to get a non-stupid path that 
steers as far from the obstacles as it can.

Visibility Graph Method
COMPLAINT
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Voronoi Diagrams

Someone gives you some dots.  Each dot is a different 
color.
You color in the whole of 2-D space according to this rule:

“The color of any given point equals the color of the 
nearest dot.”

The borders between your different regions are a VORNOI 
DIAGRAM.

For n point in 2-D space the exact Voronoi diagram can be computed in time 
O(n log n).

R

G B

Y
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Voronoi Diagram from Polygons 
instead of Points
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Voronoi Diagram Methods for C-
Space Motion Planning

• Compute the Voronoi Diagram of C-space.
• Compute shortest straightline path from 

start to any point on Voronoi Diagram.
• Compute shortest straightline path from 

goal to any point on Voronoi Diagram.
• Compute shortest path from start to goal 

along Voronoi Diagram.
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Voronoi Diagrams

• Assumes polygons, and very complex above 2-D.
Answer: very nifty approximate algorithms (see Howie 
Choset’s work http://voronoi.sbp.ri.cmu.edu/~choset)

• This “use Voronoi to keep clear of obstacles” is just a 
heuristic.  And can be made to look stupid:

COMPLAINT

Can you see 
how?
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Voronoi Diagrams

• Assumes polygons, and very complex above 2-D.
Answer: very nifty approximate algorithms (see Howie 
Choset’s work http://voronoi.sbp.ri.cmu.edu/~choset)

• This “use Voronoi to keep clear of obstacles” is just a 
heuristic.  And can be made to look stupid:

COMPLAINT

Start  · · Goal
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Cell Decomposition Methods
Cell Decomp Method One:  Exact Decomp
• Break free space into convex exact polygons.

…But this is also impractical above 2-D or with non-polygons.
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Approximate Cell Decomposition

• Lay down a grid

• Avoid any cell which intersects an obstacle

• Plan shortest path through other cells (e.g. with A*)
If no path exists, double the resolution and try again.  Keep trying!!
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Variable Resolution “Approximate and Decompose”
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Variable Resolution “Approximate and Decompose”
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Approximate Cell Decomposition

� Not so many complaints.  This is actually 
used in practical systems.

But
o Not exact (no notion of “best” path)
o Not complete: doesn’t know if problem 

actually unsolvable
o Still hopeless above a small number of 

dimensions?

COMPLAINTS
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Potential Methods

SIMPLE MOTION 
PLANNER: Steepest 
Descent on u
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Potential 
Field 

Example
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Solution I:
Use special local-minimum-free potential fields (Laplace 
equations can do this) – But very expensive to compute

Solution II:
When at a local minimum start doing some searching 
- example soon

Spot the Obvious Problem!
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Comparison

Easy to Implement?

Spots Impossibilities?

In 2-dGives Optimal?

Usable Online?

In 2-dFast to Compute?

Practical above 8 D?

Practical above 2 or 3 D?

VisibilityVoronoi
Approx 
Cell 
Decomp

Potential 
Fields

?

?

?


