
Slide 1

Robot Motion
Planning

CSIS 4463

Slide 2

Spatial Reasoning

Can’t we use our previous methods?
Discrete Search? – Not a discrete problem
CSP? – Not a natural CSP formulation
Probabilistic? – Nope.

Start
Configuration

Immovable
Obstacles

Goal Configuration

Slide 3

Robots
For our purposes, a robot is:

A set of moving rigid objects called LINKS which are connected by
JOINTS.

Typically, joints are
REVOLUTE or PRISMATIC.

Such joints each give one
DEGREE OF FREEDOM.

Given p DOFs, the configuration of the robot can be represented by p
values q = (q1 q2 ···qp) where qi is the angle or length of the i’th joint

Slide 4

Free-Flying Polygons
If part of the robot is fixed in the world, the joints are all the DOFs
you’re getting. But if the robot can be free-flying we get more DOFs.

Fixed

May move in x
direction or y
direction

May move in x
& y dir and may
rotate

0 DOFs 2 DOFs

3 DOFs

Slide 5

Examples

The configuration q has one real valued entry per DOF.
~

·
·

··

·
·

Fixed

How many DOFs?

Free flying

How many DOFs?

Midline ■■■ must
always be horizontal.

How many DOFs?

Slide 6

Robot Motion Planning
An important, interesting, spatial reasoning problem.

• Let A be a robot with p degrees of freedom,
living in a 2-D or 3-D world.

• Let B be a set of obstacles in this 2-D or 3-D
world.

• Call a configuration LEGAL if it neither intersects
any obstacles nor self-intersects.

• Given an initial configuration qstart and a goal
config qgoal, generate a continuous path of legal
configurations between them, or report failure if
no such path exists.

~

~

Slide 7

Configuration Space

Is the set of legal configurations of the robot.
It also defines the topology of continuous
motions

For rigid-object robots (no joints) there exists
a transformation to the robot and obstacles
that turns the robot into a single point. The

C-Space Transform

Slide 8

Configuration Space Transform
Examples 2-D World

2 DOFs

Where can I move
this robot in the
vicinity of this

obstacle? …is
equivalent
to…

Where can I move
this point in the
vicinity of this

expanded
obstacle?

Slide 9

Configuration Space Transform
Examples 2-D World

2 DOFs

Where can I move
this robot in the
vicinity of this

obstacle? …is
equivalent
to…

Where can I move
this point in the
vicinity of this

expanded
obstacle?

Assuming you’re
not allowed to
rotate

Slide 10

Configuration Space Transform Examples
2-D World
3 DOFs

We’ve turned the problem from “Twist and turn this 2-D polygon past this
other 2-D polygon” into “Find a path for this point in 3-D space past this weird
3-D obstacle”.

Why’s this transform useful?

Because we can plan paths for points instead of polyhedra/polygons

Slide 11

Robot Motion Planning Research
…Has produced four kinds of algorithms. The first is the
Visibility Graph.

Slide 12

Visibility Graph
Suppose someone gives you a CSPACE with polygonal obstacles

If there were no blocks,
shortest path would be
a straight line.

Else it must be a
sequence of straight
lines “shaving” corners
of obstacles.qstart

qgoal

Obvious, but very
awkward to prove

Slide 13

Visibility Graph Algorithm

1. Find all non-blocked
lines between
polygon vertices,
start and goal.

2. Search the graph of
these lines for the
shortest path.
(Guess best search
algorithm?)

qstart

qgoal

If there are n vertices,

the easy algorithm is

O(n3). Slightly

tougher O(n2 logn).

O(n2) in theory.

Slide 14

• Visibility graph method finds the shortest path.

• But it does so by skirting along and close to
obstacles.

• Any error in control, or model of obstacle
locations, and Bang! Screech!!

Who cares about optimality?
Perhaps we want to get a non-stupid path that
steers as far from the obstacles as it can.

Visibility Graph Method
COMPLAINT

Slide 15

Voronoi Diagrams

Someone gives you some dots. Each dot is a different
color.
You color in the whole of 2-D space according to this rule:

“The color of any given point equals the color of the
nearest dot.”

The borders between your different regions are a VORNOI
DIAGRAM.

For n point in 2-D space the exact Voronoi diagram can be computed in time
O(n log n).

R

G B

Y

Slide 16

Voronoi Diagram from Polygons
instead of Points

Slide 17

Voronoi Diagram Methods for C-
Space Motion Planning

• Compute the Voronoi Diagram of C-space.
• Compute shortest straightline path from

start to any point on Voronoi Diagram.
• Compute shortest straightline path from

goal to any point on Voronoi Diagram.
• Compute shortest path from start to goal

along Voronoi Diagram.

Slide 18

Voronoi Diagrams

• Assumes polygons, and very complex above 2-D.
Answer: very nifty approximate algorithms (see Howie
Choset’s work http://voronoi.sbp.ri.cmu.edu/~choset)

• This “use Voronoi to keep clear of obstacles” is just a
heuristic. And can be made to look stupid:

COMPLAINT

Can you see
how?

Slide 19

Voronoi Diagrams

• Assumes polygons, and very complex above 2-D.
Answer: very nifty approximate algorithms (see Howie
Choset’s work http://voronoi.sbp.ri.cmu.edu/~choset)

• This “use Voronoi to keep clear of obstacles” is just a
heuristic. And can be made to look stupid:

COMPLAINT

Start · · Goal

Slide 20

Cell Decomposition Methods
Cell Decomp Method One: Exact Decomp
• Break free space into convex exact polygons.

…But this is also impractical above 2-D or with non-polygons.

Slide 21

Approximate Cell Decomposition

• Lay down a grid

• Avoid any cell which intersects an obstacle

• Plan shortest path through other cells (e.g. with A*)
If no path exists, double the resolution and try again. Keep trying!!

S

...

.....

..·.

..··

....

.....

..·

..

..

G..

Slide 22

Variable Resolution “Approximate and Decompose”

Slide 23

Variable Resolution “Approximate and Decompose”

Slide 24

Approximate Cell Decomposition

� Not so many complaints. This is actually
used in practical systems.

But
o Not exact (no notion of “best” path)
o Not complete: doesn’t know if problem

actually unsolvable
o Still hopeless above a small number of

dimensions?

COMPLAINTS

Slide 25

Potential Methods

SIMPLE MOTION
PLANNER: Steepest
Descent on u

() () ()

() ()() ()∑ +=

−=

=

=

→
→

ℜ→

2

2

~~

~~~

~

1

2

1

2

1
   :definition Preferred

   : of definition One

obstaclenearest   to from distance              

goal   to from distance      Write

goal  the towardsmoveyou  as   small    

obstaclean   towardsmoveyou  as    huge    

Such that

ionsConfigurat:    

   function   a Define

qd
qdqu

qdqdquu

qqd

qqqd

u

u

u

qu

i

g

gi

i

g

η



Slide 26

Potential 
Field 

Example



Slide 27

Solution I:
Use special local-minimum-free potential fields (Laplace 
equations can do this) – But very expensive to compute

Solution II:
When at a local minimum start doing some searching 
- example soon

Spot the Obvious Problem!



Slide 28

Comparison

Easy to Implement?

Spots Impossibilities?

In 2-dGives Optimal?

Usable Online?

In 2-dFast to Compute?

Practical above 8 D?

Practical above 2 or 3 D?

VisibilityVoronoi
Approx 
Cell 
Decomp

Potential 
Fields

?

?

?


