Stochastic Search: Part 2

Genetic Algorithms

Vincent A. Cicirello

Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

cicirello@ri.cmu.edu

The Genetic Algorithm (GA)

T he genetic algorithm is based on the mechan-
ics of natural genetics and natural selection.

e Population based
e Survival of the fittest
e Variation

e Mutations

The Simple GA: Representation

You begin with a population of random bit
strings. Each bit string encodes some prob-
lem configuration.

For example, you can encode SAT by repre-
senting each boolean variable by a position in
the bit string:

ABCDEFGH AV -Bv(C
(1]ofool 1[0l of1] A
(o[1]1[1]0]0l0[1] —-AVCVD
[1foJof1]of1]1][1] A
(o[1]1]ofo[1]01] BvDV-E
N\
-C'V-DV-FE
N\
AV -CVEFE

And you begin with a population of n randomly
generated individuals.

The Simple GA: Selection

Selection determines which from among your
initial population reproduce.

As in Nature, the fittest survive.

We need a measure of fitness....

For example, for SAT we can use the number
of satisfied clauses.

The Simple GA: Selection

Once we have a fitness function, how do we
choose which individuals survive?

Fitness proportionate (Weighted roulette
wheel)

1. Each individual gets a chunk of a roulette
wheel proportional to its fithess relative to the
rest of the population.

2. Spin the roulette wheel n times where n
IS the size of the population.

3. Repeat selection is allowed.
fO=3

f1=2

f2=1

f3=6 s3

s2

sO
sl

Stochastic Universal Sampling (SUS)

Spin n-pointer roulette wheel once

fO =3

fl=2
f2=1
f3=6 s3

S2

sO
sl

The Simple GA: Selection

Other selection methods: ranking, expected
number, tournaments, truncation

What happens if we repeat this process itera-
tively?

e With high probability we get population full
of best individual in the initial population.

e i.e., a noisy expensive way of choosing the
best from a set (not very useful by itself)

The Simple GA: Recombination

Single point crossover

e [wo individuals are mated at random

e Cross site chosen at random.

e Cut and splice pieces of parents to form two
new individuals:

110/0]0]1]0]|0]1
0/1]1{1/0]0/0]1

L

The Simple GA: Recombination

k-point crossover

e Instead of above, k cross sites are chosen at
random

e More disruptive.

Uniform crossover

e Don’'t choose any cross sites.

e Line up parents

e Iterate through strings and with probability
pe Swap bit values between strings.

10

The Simple GA: Mutation

With some small probability, randomly alter a
bit position (i.e., flip a 0 to a 1 or vice versa).
1. Iterate through the bit string.

2. And for each bit, with probability p., flip
the bit.

0/1]1/1/1]0]0]1

L
L

What do we get if we repeat mutation itera-
tively on an initial population?

e Get a random population (i.e., perform a
random walk).

e Not very useful by itself.

11

What do we have so far?

So far we have seen three operators that sep-
arately are rather useless.

e Selection (by itself): inefficient way of
choosing best from an unordered set.

e Crossover (by itself): a random shuffle

e Mutation (by itself): a random walk

Can we make something useful out of a com-
bination of these?

12

Putting it all together

Selection 4+ Crossover = Innovation

e Selection gives us a population of the strong-
est individuals.

e Crossover attempts to combine parts of
good individuals to make even better new ones.

Selection + Mutation =
Stochastic Hill Climbing

e Selection gives us a population of the strong-
est individuals.

e Mutation makes slight alterations to these.
e Repeating this process will weed out the bad
mutations and keep the good.

e We essentially have the equivalent of
stochastic hill climbing.

13

Putting it all together

Selection 4+ Crossover + Mutation =
T he Power of the GA

e SO ‘selection + mutation = stochastic hill
climbing”

e Add crossover to that, and we have stochas-
tic hill climbing with a means of jumping to
potentially “interesting” parts of the search
space.

e Mutation is also often seen as an insurance
policy against the irreversible loss of key bits.

14

The Simple GA

Let P := a random population of n bitstrings
Until “Convergence” or “bored” do
Let f; = Fitness(P;) fori=1...n
Let P’ = SelectNewPopulation(P, f)
Pair up the individuals in P’ at random
and for each pair with probability C
perform crossover replacing the parents
with the children otherwise keep the
parents unaltered.
6. For each P/ in P’ perform mutation
i.e. iterate through bitstring
flipping each bit with
probability M
7. Let P = P/

A

So how long do we iterate this?

15

When to Stop
Some possibilities:

e If we've found an individual with the maxi-
mum value of the fithess function; or

e After iterating entire process some prede-
fined maximum number of *“generations”; or

e \When population converges upon a single
individual (i.e., they are all the same).

e When f; = f] for all PZ',P]' in P.

e After some number of generations without
improving upon the best so far.

Usually you use two or three stopping criteria.
16

Example: SAT

AV -BvVC A
—AVvCVDA
BvDvV-E A
~CV-DV-E A
—AV-CVE A
EVFV-GA
BvCvVvVD

1111111 (fo=286)
1000101 (fy=4)
0111001 (fp=6)
0000000 (f3=6)
1001011 (f4=6)
0110011 (fs=26)

Let's simulate one iteration of the GA given
this initial population.

17

18

What about the TSP?

S0, how should we encode the TSP? Cities on
a stack some number of bits to choose which
by position.

City stack
A 5 c ol A
> o B
H® .E C
° D
[Te =
F
G
H
encoding

101..111..110..111..000..010..110..001

F A B E € H D G
@

RN

19

Why you might not want to do this

Crossover

parents

101..111..110..111..000..010..110..001
F A B E C H D G
A
000..000..000..000..000..000..000..000
A B C D E F G H

N

children
101..111..110..111..000..000..000..000
F A B E C€C D G H

e

000..000..000..000..000..010..110..001
A B C D E H F G

PSR g

--children tend to differ from parents
--most noticeable in 2nd child above
--can be much worse!!

20

Why you might not want to do this

Mutation

encoding
101..111..110..111..000..010..110..001

F A B E C H D G
R 4

111..111..110..111..000..010..110..001
H A B E C€C G D F

="

A single bit mutation has replaced 4 edges
from parent tour!!!

Can we do any better? Any suggestions?

21

Other Representations: Permutations

no bitstrings
FABECHDG

F A B E cC H D G
et/
but what happens with xover?

FABECHDG
ABCDEFGH

F A
A B

22

Partially Matched Crossover (PMX)

F A B E C H D G

)

A B ¢ D E F G H

w | 7.
choose 2 cross sites

FABECH
ABCDEF

D G
G H
--work Ieft-to-right IN Cross region
A
B

B G D
E D F

H CEF
A G CH

hmmm...not any better?

Respects absolute position

23

Order Crossover (OX)
choose 2 cross sites

FABECH

D G
ABCDEFGH

Y

- AB-CHD -
AB - -EFG -

Respects relative position

24

Control Parameters

So far, we've defined many parameters:
e Crossover rate

e Mutation rate

e Max number of generations

e Population size

And there can be many others depending on
choice of operators (for example, uniform
crossover has an additional parameter).

Even what crossover operator we use can be
seen as a parameter.

Some of the possible stopping criteria have
their own parameters.

How do we set these? Any ideas?

25

Parameter Tuning

GA parameter tuning is a wide open research
area. There is no general set of rules or guide-
lines to follow in parameter tuning.

Unfortunately, the most often used method
is that of hand-tuning, or trial-and-error (i.e.,
make up a set, try it and see what happens,
repeat).

This doesn’'t sound pleasant. Can we do any
better?

26

Parameter Tuning

e De Jong (1975) systematically studied the
effects of the control parameters on a class of GAS.
° These parameters are often blindly used.

e Population Size
Typically people set this to between
50 and 100 for the simple GA.

° Some feel that the appropriate
population size is related to the encoding
length in some way.

e Mutation Rate
Usually set to some “low” value
Some design it in such a way to lead to an
expected number of mutated bits per
individual (if length is 100 and 1 bit
mutation desired then p;; = 0.01).

° Why not decay mutation rate? high rate
early for exploration and decay rate as we
begin converging toward a solution.

27

Parameter Tuning

Metalevel Optimization
Employing a second GA to optimize
the parameters.
Fitness evaluation expensive! (have
to execute the primary GA some
number of times! Argh!)
Also, what determines fitness?
Quality of result?
Convergence time?
Combination of both and how?

Adapting Control Parameters Over Time
Adding parameters to encoding and
evolving with solution to problem.

Using problem related feedback in
some way and adapting parameters
based on current population in some way.

28

A Representation: Vector of Reals

Are bit strings and permutations the only thing
we can evolve with GAs? No.

Let’'s take Metalevel Optimization as an exam-
ple. How would we encode the control param-
eters of the primary GA? One possibility: bit
strings.

Another possibility: a vector of real valued pa-
rameters

(R17R27 . 7Rn)

Crossover: same as with bit strings only with
reals rather than bits.

Mutation:

Add g to some real parameter where g is drawn
from a Gaussian distribution with (ux =0, 0).
Decay o over time.

29

Genetic Programming (GP)

Formulated by Koza (19907) as a means of
automatic programming.

Terminals: X, Y, 1, 2, zero-arg-functions, etc.
Functions: 4, —, %, /, >, if, ifte, etc.

Programs are encoded by parse trees typically
representing a computer program in Lisp.

® ® ©
S O, (ifte (> XY) XY)

30

GP: Random Creation

After defining your terminal set and function
set you randomly generate an initial popula-
tion.

Each random parse tree is generated as fol-
lows:

1. Let T equal an empty parse tree.

2. Let ¢ = a random function or terminal.
3. Add C to T.

4. If C at predefined maximum initial depth
then choose random terminals for each of the
children of C' and add these to T

5. Otherwise recurse on this procedure for
each of the children of C'.

31

GP: Crossover

e Pick two parents at random based on fit-
ness.

e Independently, pick a random node in each
of the parse trees.

e Swap the two subtrees identified by these
nodes between the trees.

®
> O® @é@

® O @

®
OO © ®
© O ®

32

GP: Mutation

Pick one parent at random based on fitness.
Pick a random node in this tree.

Remove the subtree rooted here.

Grow a new subtree in the same manner as
the initial population was grown.

OO G®O
® 0 000

33

GP

1. Let P = random initial population.
2. Until Stopping Criterion

3. Choose R% of next population P’
from P unaltered.

4. Choose M% of next population P’
from P and perform Mutation.

5. Choose C% of next population P’

from P, pair up at random and
perform crossover.

6. Note: (R+ M 4+ C = 100%)
Repeat selection allowed.
All selections based on fitness.

Population sizes tend to be quite large for GP
(i.e., 500-1000 individuals would not be unrea-
sonable).

34

GA Issues

e Choice of representation is critical (bit
strings not always the best choice).

e Choice of genetic operators often critical.

e Design of fitness function is often critical.

e A “bad” choice of encoding / fitness func-
tion combo may result in poor performance.

e Control parameter tuning is critical and no
good guidelines for doing so.

35

GA Discussion

e Often the ‘second best way”’ to solve a
problem.

e But relatively easy to implement.
e T[The simple GA is blind and doesn’'t care
about problem specifics other than the fithess

function.

e Can sometimes improve performance with
problem specific heuristic operators.

36

