
Stochastic Search� Part �

Genetic Algorithms

Vincent A� Cicirello

Robotics Institute

Carnegie Mellon University

���� Forbes Avenue

Pittsburgh� PA �����

cicirello�ri�cmu�edu

�

The Genetic Algorithm �GA�

The genetic algorithm is based on the mechan�

ics of natural genetics and natural selection�

� Population based

� Survival of the 	ttest

� Variation

� Mutations

�

The Simple GA� Representation

You begin with a population of random bit

strings� Each bit string encodes some prob�

lem con	guration�

For example� you can encode SAT by repre�

senting each boolean variable by a position in

the bit string

1 1 1

1 1 1 1

111 1 1

1 1 1 1

0 0 0 0 0

0 0

0 0
0 0 00

0

0

0

A B C D E F G H A � �B � C
�

�A � C �D
�

B �D � �E
�

�C � �D � �E
�

�A � �C �E

And you begin with a population of n randomly

generated individuals�

�

The Simple GA� Selection

Selection determines which from among your

initial population reproduce�

As in Nature� the 	ttest survive�

We need a measure of 	tness����

For example� for SAT we can use the number

of satis	ed clauses�

�

The Simple GA� Selection

Once we have a 	tness function� how do we

choose which individuals survive�

Fitness proportionate �Weighted roulette

wheel

�� Each individual gets a chunk of a roulette

wheel proportional to its 	tness relative to the

rest of the population�

�� Spin the roulette wheel n times where n

is the size of the population�

�� Repeat selection is allowed�
f0 = 3
f1 = 2
f2 = 1
f3 = 6

s0
s1

s2

s3

�

Stochastic Universal Sampling �SUS�

Spin n�pointer roulette wheel once

f0 = 3
f1 = 2
f2 = 1
f3 = 6

s0
s1

s2

s3

�

�

The Simple GA� Selection

Other selection methods
 ranking� expected

number� tournaments� truncation

What happens if we repeat this process itera�

tively�

� With high probability we get population full

of best individual in the initial population�

� i�e�� a noisy expensive way of choosing the

best from a set �not very useful by itself

�

The Simple GA� Recombination

Single point crossover

� Two individuals are mated at random

� Cross site chosen at random�

� Cut and splice pieces of parents to form two

new individuals

1 1 1

1 1 1 1

0 0 0 0 0

0 0 00

1

1 11 1 1

10 0 0

0 0

0 0 0

0

�

The Simple GA� Recombination

k�point crossover

� Instead of above� k cross sites are chosen at

random

� More disruptive�

Uniform crossover

� Don�t choose any cross sites�

� Line up parents

� Iterate through strings and with probability

pc swap bit values between strings�

�	

The Simple GA� Mutation

With some small probability� randomly alter a

bit position �i�e�� �ip a � to a � or vice versa�

�� Iterate through the bit string�

�� And for each bit� with probability pm �ip

the bit�

1 11 1 1 0 00

1 11 1 0 0 00

What do we get if we repeat mutation itera�

tively on an initial population�

� Get a random population �i�e�� perform a

random walk�

� Not very useful by itself�

��

What do we have so far�

So far we have seen three operators that sep�

arately are rather useless�

� Selection �by itself
 ine�cient way of

choosing best from an unordered set�

� Crossover �by itself
 a random shu�e

� Mutation �by itself
 a random walk

Can we make something useful out of a com�

bination of these�

��

Putting it all together

Selection � Crossover � Innovation

� Selection gives us a population of the strong�

est individuals�

� Crossover attempts to combine parts of

good individuals to make even better new ones�

Selection � Mutation �

Stochastic Hill Climbing

� Selection gives us a population of the strong�

est individuals�

� Mutation makes slight alterations to these�

� Repeating this process will weed out the bad

mutations and keep the good�

� We essentially have the equivalent of

stochastic hill climbing�

��

Putting it all together

Selection � Crossover � Mutation �

The Power of the GA

� So �selection � mutation � stochastic hill

climbing�

� Add crossover to that� and we have stochas�

tic hill climbing with a means of jumping to

potentially �interesting� parts of the search

space�

� Mutation is also often seen as an insurance

policy against the irreversible loss of key bits�

��

The Simple GA

�� Let P
� a random population of n bitstrings

�� Until �Convergence� or �bored� do

�� Let fi � Fitness�Pi for i � � � � � n

�� Let P � � SelectNewPopulation�P � f

�� Pair up the individuals in P � at random

and for each pair with probability C

perform crossover replacing the parents

with the children otherwise keep the

parents unaltered�

�� For each P �

i in P � perform mutation

i�e� iterate through bitstring

�ipping each bit with

probability M

�� Let P � P �

So how long do we iterate this�

��

When to Stop

Some possibilities

� If we�ve found an individual with the maxi�

mum value of the 	tness function� or

� After iterating entire process some prede�

	ned maximum number of �generations�� or

� When population converges upon a single

individual �i�e�� they are all the same�

� When fi � fj for all Pi� Pj in P �

� After some number of generations without

improving upon the best so far�

� � � �

Usually you use two or three stopping criteria�

��

Example� SAT

A � �B � C �

�A � C �D �

B �D � �E �

�C � �D � �E �

�A � �C �E �

E � F � �G �

B � C �D

� � � � � � � �f� � �

� � � � � � � �f� � �

� � � � � � � �f� � �

� � � � � � � �f� � �

� � � � � � � �f� � �

� � � � � � � �f� � �

Let�s simulate one iteration of the GA given

this initial population�

��

��

What about the TSP�

So� how should we encode the TSP� Cities on

a stack some number of bits to choose which

by position�

A

B
C

D

E

F
G

H

A
B
C
D
E
F
G
H

City stack

101..111..110..111..000..010..110..001
encoding

F A B E C H D G

��

Why you might not want to do this

101..111..110..111..000..010..110..001

F A B E C H D G

Crossover
parents

000..000..000..000..000..000..000..000
FA B EC HD G

children
101..111..110..111..000..000..000..000

F A B E C HD G

000..000..000..000..000..010..110..001

FA B EC HD G

--children tend to differ from parents
--most noticeable in 2nd child above
--can be much worse!!

�	

Why you might not want to do this

101..111..110..111..000..010..110..001
encoding

F A B E C H D G

Mutation

111..111..110..111..000..010..110..001
FA B E CH DG

A single bit mutation has replaced 4 edges
from parent tour!!!

Can we do any better� Any suggestions�

��

Other Representations� Permutations

A B C D E F G H

F A B E C H D G

F A B E C H D G

no bitstrings

but what happens with xover?

F A B E C H D G

A B C D C H D G

F A B E E F G H

��

Partially Matched Crossover �PMX�

A B C D E F G H

F A B E C H D G

choose 2 cross sites

--work left-to-right in cross region

A B E G C H D F

H A B C E F G D

FA B ECH DG

FA B E C H DG

F A B E C H D G

FA B EC HD G

hmmm...not any better?

Respects absolute position

��

Order Crossover �OX�

A B C D E F G H

F A B E C H D G

choose 2 cross sites

A B -- -- E F G --

-- A B -- C H D --

B E F G -- -- -- A

B C H D -- -- -- A

F AB EC H D G

F AB E C H DG

B E F G C H D A

B C H D E F G A

Respects relative position

��

Control Parameters

So far� we�ve de	ned many parameters

� Crossover rate

� Mutation rate

� Max number of generations

� Population size

And there can be many others depending on

choice of operators �for example� uniform

crossover has an additional parameter�

Even what crossover operator we use can be

seen as a parameter�

Some of the possible stopping criteria have

their own parameters�

How do we set these� Any ideas�

��

Parameter Tuning

GA parameter tuning is a wide open research

area� There is no general set of rules or guide�

lines to follow in parameter tuning�

Unfortunately� the most often used method

is that of hand�tuning� or trial�and�error �i�e��

make up a set� try it and see what happens�

repeat�

This doesn�t sound pleasant� Can we do any

better�

��

Parameter Tuning

� De Jong ����� systematically studied the
e�ects of the control parameters on a class of GAs�

� These parameters are often blindly used�

� Population Size

� Typically people set this to between
�� and ��� for the simple GA�

� Some feel that the appropriate

population size is related to the encoding
length in some way�

� Mutation Rate

� Usually set to some �low� value
� Some design it in such a way to lead to an

expected number of mutated bits per

individual �if length is ��� and � bit
mutation desired then pM � �����

� Why not decay mutation rate� high rate

early for exploration and decay rate as we
begin converging toward a solution�

��

Parameter Tuning

� Metalevel Optimization

� Employing a second GA to optimize

the parameters�

� Fitness evaluation expensive� �have

to execute the primary GA some

number of times� Argh�

� Also� what determines 	tness�

Quality of result�

Convergence time�

Combination of both and how�

� Adapting Control Parameters Over Time

� Adding parameters to encoding and

evolving with solution to problem�

� Using problem related feedback in

some way and adapting parameters

based on current population in some way�

��

A Representation� Vector of Reals

Are bit strings and permutations the only thing

we can evolve with GAs� No�

Let�s take Metalevel Optimization as an exam�

ple� How would we encode the control param�

eters of the primary GA� One possibility
 bit

strings�

Another possibility
 a vector of real valued pa�

rameters

�R�� R�� � � � � Rn

Crossover
 same as with bit strings only with

reals rather than bits�

Mutation

Add g to some real parameter where g is drawn

from a Gaussian distribution with ��� �� ��

Decay � over time�

��

Genetic Programming �GP�

Formulated by Koza ������ as a means of

automatic programming�

Terminals
 X� Y � �� �� zero�arg�functions� etc�

Functions
 �� �� �� �� �� if� ifte� etc�

Programs are encoded by parse trees typically

representing a computer program in Lisp�

ifte

>

X Y

X Y

(ifte (> X Y) X Y)

�	

GP� Random Creation

After de	ning your terminal set and function

set you randomly generate an initial popula�

tion�

Each random parse tree is generated as fol�

lows

�� Let T equal an empty parse tree�

�� Let C � a random function or terminal�

�� Add C to T �

�� If C at prede	ned maximum initial depth

then choose random terminals for each of the

children of C and add these to T

�� Otherwise recurse on this procedure for

each of the children of C�

��

GP� Crossover

� Pick two parents at random based on 	t�

ness�

� Independently� pick a random node in each

of the parse trees�

� Swap the two subtrees identi	ed by these

nodes between the trees�

ifte

>

X Y

X Y

+

X *

2 Y

ifte

>

X Y

X Y

+

X*

2 Y

��

GP� Mutation

� Pick one parent at random based on 	tness�

� Pick a random node in this tree�

� Remove the subtree rooted here�

� Grow a new subtree in the same manner as

the initial population was grown�

ifte

>

X Y

X Y

ifte

>

X Y

X -

Y 4

��

GP

�� Let P � random initial population�

�� Until Stopping Criterion

�� Choose R� of next population P �

from P unaltered�

�� Choose M� of next population P �

from P and perform Mutation�

�� Choose C� of next population P �

from P � pair up at random and

perform crossover�

�� Note
 �R�M � C � ����

Repeat selection allowed�

All selections based on 	tness�

Population sizes tend to be quite large for GP

�i�e�� �������� individuals would not be unrea�

sonable�

��

GA Issues

� Choice of representation is critical �bit

strings not always the best choice�

� Choice of genetic operators often critical�

� Design of 	tness function is often critical�

� A �bad� choice of encoding � 	tness func�

tion combo may result in poor performance�

� Control parameter tuning is critical and no

good guidelines for doing so�

��

GA Discussion

� Often the �second best way� to solve a

problem�

� But relatively easy to implement�

� The simple GA is blind and doesn�t care

about problem speci	cs other than the 	tness

function�

� Can sometimes improve performance with

problem speci	c heuristic operators�

��

