
Adversarial Search
a.k.a. Game Search

Vincent Cicirello

Overview

• Definition of games
• Game Terminology
• Game Trees
• Game theoretic values
• Computing game theoretic values with

recursive minimax
• Computing game theoretic values with

dynamic programming
• Alpha-beta search
• Playing games in real-time

Two-player zero-sum discrete finite
deterministic games of perfect information
• Two player: well, there are two players…
• Zero Sum: In any outcome of any game Player

A’s gains equals Player B’s losses.
• Discrete: All game states and decisions are

discrete values.
• Finite: There are only a finite number of states

and decisions.
• Deterministic: no chance… no dice rolls… etc
• Games: defined shortly….
• Perfect information: Both players can see the

state, and each decision is made sequentially.

A game defined….
• A two-player zero-sum discrete finite

deterministic game of perfect information is a
quintuplet, (S, I, Succs, T, V) where:
– S: Finite set of states (must include sufficient

information to deduce whose turn it is to move next)
– I: Initial state
– Succs: Function that takes a state as input and

returns a set of states (legal positions after a move).
• Must be non-empty if its argument is not a terminal state

– T: The set of terminal states (i.e., states when game
ends and payoff occurs)

– V: Mapping from terminal states to real numbers
(payoff to player A and loss to player B)

Example: Nim

• You begin with some number of piles of matches.
• During a turn, the player may remove any number of

matches from one pile
• The last person to remove a match loses
• In II-Nim, you begin with two piles each with two

matches
• States of Nim

– A(jj,jj); A(j,jj); A(_,jj); A(jj,j); A(jj,_); A(j,j); A(_,j); A(j,_);
A(_,_)

– B(jj,jj); B(j,jj); B(_,jj); B(jj,j); B(jj,_); B(j,j); B(_,j); B(j,_);
B(_,_)

Nim (continued)
• States of Nim

– A(jj,jj); A(j,jj); A(_,jj); A(jj,j); A(jj,_); A(j,j); A(_,j); A(j,_);
A(_,_)

– B(jj,jj); B(j,jj); B(_,jj); B(jj,j); B(jj,_); B(j,j); B(_,j); B(j,_);
B(_,_)

• Common Trick: Symmetry
– Some states are trivially equivalent (e.g., A(_,jj); A(jj,_))
– Use some canonical description to make them one state

• e.g., left pile always has at least as many matches as right
• States of Nim using Symmetry

– A(jj,jj); A(jj,j); A(jj,_); A(j,j); A(j,_); A(_,_)
– B(jj,jj); B(jj,j); B(jj,_); B(j,j); B(j,_); B(_,_)

Nim formalized
• S = {A(jj,jj); A(jj,j); A(jj,_); A(j,j); A(j,_); A(_,_); B(jj,jj); B(jj,j);

B(jj,_); B(j,j); B(j,_); B(_,_)}
• I = A(jj,jj)
• Succs(A(jj,jj)) = {B(jj,j); B(jj,_)}
• Succs(B(jj,j)) = {A(jj,_); A(j,j); A(j,_)}
• Succs(B(jj,_)) = {A(j,_); A(_,_)}
• etc …
• T = {A(_,_), B(_,_)}
• V(A(_,_)) = +1; V(B(_,_)) = -1

Game Theoretic Value

• Definition: The game theoretic value
(a.k.a. the minimax value) of a state is the
value of the terminal state that will be
reached if both players play optimally.

• How can we find the minimax values for
non-terminal states?

• Idea: Fill in the tree bottom-up.

Game Theoretic Value: Nim

The Minimax Algorithm
• Generate the full Game

tree, storing it in
memory

• Run through all of the
terminal states
assigning them values.

• Run through all
predecessors assigning
them values, etc, etc,
etc…

• Question: Do we really
need to store the whole
game tree in memory?
– NO… Can do a DFS-

like algorithm

• Minimax-Value(S)
– if (S is a terminal)

• return V(S)
– else

• Let S1,S2,…Sk =
Succs(S)

• Let vi = Minimax-Value
(Si) for each Si

• If PlayerToMove(S) = A
– return Max(vi)

• else
– return Min(vi)

Dynamic Programming (DP)
• Dynamic Programming---Russell & Norvig’s

definition:
– “solutions to subproblems are constructed

incrementally from those of smaller subproblems
and are cached to avoid recomputation”

• You’ve may have encountered this in other
classes (e.g., possibly if you’ve taken Data
Structures, or perhaps if you’ve taken OR).

DP for Solving Games
• Consider a game with N states, where the game is

usually of length l and where each state has b
successors.

• Minimax requires that O(bl) states are expanded.
– This is best case as well as worst case.
– Whereas, DFS for simple search problems in the best

case can be O(l).
• What if the number of states N is smaller than bl?

– E.g., for chess, N=10^40, while bl=10^120
• In such cases, DP is a better method, assuming

you can afford the memory.
– Cost of DP: O(N l)

Example: DP for Chess Endgames

• Consider that there are only 4 chess
pieces left on the board.

• With sufficient computational resources,
you can compute, for all possible
positions, whether it is a win for black,
white, or a draw.

• Details next slide….

DP for Chess Endgames
• Assume there are N positions with no more than 4

pieces left:
1. Define a 1-to-1 mapping from the N board positions to the integers

0..N-1
2. Create a large array of length N (with 2 bits per entry). Each

element in the array can take on one of three values:
– W: White will eventually win.
– B: Black will eventually win
– ?: We don’t know who wins from this state

3. Mark all terminal states with their values, W or B.
4. Look through all states still marked by “?”

• If W is about to move, then
• if all successors are marked with B, mark the state B
• if any successor state is marked W, then mark the state W
• else leave the state unchanged (marked “?”)

• if B is about to move, then
• if all successors are marked with W, mark the state W
• if any successor state is marked B, then mark the state B
• else leave the state unchanged (marked “?”)

5. If 4 changed the label of at least one state, then repeat 4.
6. Any state still marked with “?” is a state from which no one can

force a win---thus a draw

Cutting off unneeded search states

• If we knew the only
possible outcomes
were +1 and -1, can
we save
computation?

• Yes… a lot actually
– though not much in this example
– if any successor is a forced win for the current

player, don’t bother expanding further successors

What if possible terminal values are
unknown?

• Do DFS, but if something is discovered that implies
your parent would not choose you, then don’t bother
expanding further successors.

• More generally, not just your parent, but any
ancestors.

An ancester causing cut-off

• Suppose we’ve done a full
DFS, expanding left-most
successors first and that we
are currently at the search
state marked by the *

• What can we cut off in the
rest of the search?

• If either player has a better
alternative at an ancestor of
a given search node, then it
will not be visited.

A general cut-off rule
• In this example:

– let α=max(v1,v3,v5)
– let β=min(v6,v7)
– if β <= α, then we can be certain that

it is a waste of time searching the
“current node” or its sibling to the
right

• In general:
– if at a B-move node,

• let α =max of all A’s choices on
current path, and

• let β=min of all B’s choices including
those at current node

• Cut-off if β<= α
– Converse rule if at an A-move node

Alpha-Beta
Pruning

• Alpha-Beta Pruning
from Russell & Norvig
• Assumes players
alternate moves

What’s the top-level
call look like?
Max-Value(S,-∞ ,+ ∞)

How useful is alpha-beta pruning?

• What is the best case performance of alpha-
beta?

• How much of the tree would you examine if you
were very lucky in the order you tried
successors?

• Best case:
– The number of nodes you need to search in the tree is

O(bd/2).
– The square root of the recursive minimax cost.
– Large real-sized games with a huge number of states

are still problematic (e.g., chess)

Solving Games
• Solving a game means proving the game-theoretic value of the start state
• Some games have been solved

– by brute-force DP
• Four-in-a-row
• Some chess endgames, e.g.:

– rook and king against king (from most starting positions): win
– two bishops and king against king (from most starting positions): win
– bishop, knight, and king against king (from most starting positions): win
– two knights and king against king (from most starting positions): draw… a few rare

exceptions: win
– brute-force DP from end to create an end-game DB plus alpha-beta search

from start
• nine men’s morris

– Mostly brute-force with some game specific analysis
• Connect-Four

– Checkers has been solved (draw)
• Chinook solved Checkers during a period spanning 1989-2007
• Mostly brute-force DP (via dozens of computers)
• In 1996, Chinook became first computer program to win a human world

championship

Game Playing vs Game Solving
• Two very different activities
• Game Solving: finding the true game-theoretic

value of a state.
• What about game playing?
• Game solving often very different from playing a

game well.
• Example, what do real chess playing programs do?
• Some features that the search algorithms covered

so far in this course don’t have:
– Cannot possibly find a guaranteed solution.
– Must make decisions quickly in real-time.
– It is not possible to pre-compute a solution.

Heuristic Evaluation Functions
• Popular solution: use heuristic evaluation functions
• An evaluation function maps a state to a real value.

– The larger the evaluation, the larger the true game-theoretic position is
estimated to be.

• Note: this is not the same as the heuristic in A*…
– no notion of admissibility
– not an estimate of path cost to reach a goal

• Search the game tree as deeply as time allows
• Leaves of tree you search are not leaves of game tree, but

are intermediate nodes
• The values assigned to leaves are from the heuristic

evaluation function

Heuristic Evaluation Intuition
• Visibility:

– Evaluation function will be more accurate nearer the end of the
game.

– So worth using heuristic estimates from there.
• Filtering:

– If we used the evaluation function without searching, we’d be using
a handful of inaccurate estimates (near the root).

– By searching, we’re combining thousands of these estimates,
hopefully eliminating noise.

• Is this “intuition” dubious?
– Yes. Can give counter-examples…
– But often works very well in practice for real games…

Heuristic Evaluation Example
• A simple heuristic for chess:

– The typical introductory chess book will label:
• a bishop or knight worth the value of 3 pawns; a rook worth 5; a queen

worth 9
– This leads to a simple weighted linear evaluation function

• More sophisticated chess heuristics consider other state
features:
– good pawn structure might be worth value of a pawn
– “king safety” might be worth a pawn

• Or nonlinear evaluation functions are possible:
– two bishops might be worth slightly more than twice the value of a

single bishop
– a bishop near the end of the game may be worth more than earlier in

the game (e.g., more powerful in open space)
• Machine learning also applicable here

Some Other Issues for Real
Game Playing Programs

• How to determine how far to search if you only
have a fixed time to make a decision.

• Quiescence: What if you stop the search at a
state where subsequent moves drastically
change the evaluation?
– e.g., you search to depth d in chess, but at depth d+1,

a queen is taken…
• Quiescence search: an extra bit of search to

attempt to reach a quiescent state
– e.g., in chess, continue search only considering

“capture” moves to resolve any uncertainties in
position

More issues for real game playing
• The horizon problem:

– Consider a state in which it is inevitable that your opponent will be
able to do something bad to you.

• e.g., an inevitable queening of a pawn
– Now consider that you have some delaying tactics.
– The search algorithm won’t recognize the inevitable if the number

of delaying steps exceeds the search depth limit…
– Thus not recognizing the badness of the search state.

• Endgames: Are easy to play well. How?
– An end game database

• essentially a lookup table (e.g., generated by DP)
• Openings: Are easy to play well. How?

– An opening book
– e.g., for chess, based on hundreds of years of human chess

playing knowledge

2-player zero-sum finite NONdeterministic
games of perfect information

• The search tree now
includes states in which
neither player makes a
choice.

• Instead, a random
decision is made
according to a known set
of outcome probabilities.

• Game-theoretic value if
the expected final
outcome if both players
are optimal.

Expectiminimax
• Obvious generalization of minimax:

– Expectiminimax(n) =
• Value(n) if n is a terminal state
• max{s in successors(n)} Expectiminimax(s) if n is a Max node
• min{s in successors(n)} Expectiminimax(s) if n is a Min node
• Sum{s in successors(n)} P(s) Expectiminimax(s) if s is a chance

node

• Can we use alpha-beta pruning?
– Yes…
– for Min and Max nodes it works unchanged
– for chance nodes, if we have a bound on terminal values

• then we can place an upper bound on the value of a chance
node without looking at all of its children

Bad News for Expectiminimax
• Assume a game with dice rolls.
• Expectiminimax considers all possible dice roll sequences,

then it is:
– O(bmnm) where n is the number of distinct dice rolls

• Example: Backgammon
– n=21
– b usually 20, but as high as 4000 for dice rolls that are doubles
– can probably only manage about m=6 (3 moves each player)

• The equivalent of Alpha-Beta pruning helps the situation a
bit but not much

• State-of-the-art Backgammon programs rely heavily on
sophisticated evaluation heuristics utilizing machine learning
techniques

	Adversarial Search�a.k.a. Game Search
	Overview
	Two-player zero-sum discrete finite deterministic games of perfect information
	A game defined….
	Example: Nim
	Nim (continued)
	Nim formalized
	Game Theoretic Value
	Game Theoretic Value: Nim
	The Minimax Algorithm
	Dynamic Programming (DP)
	DP for Solving Games
	Example: DP for Chess Endgames
	DP for Chess Endgames
	Cutting off unneeded search states
	What if possible terminal values are unknown?
	An ancester causing cut-off
	A general cut-off rule
	Alpha-Beta Pruning
	How useful is alpha-beta pruning?
	Solving Games
	Game Playing vs Game Solving
	Heuristic Evaluation Functions
	Heuristic Evaluation Intuition
	Heuristic Evaluation Example
	Some Other Issues for Real Game Playing Programs
	More issues for real game playing
	2-player zero-sum finite NONdeterministic games of perfect information
	Expectiminimax
	Bad News for Expectiminimax

