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Overview

• Definition of games
• Game Terminology
• Game Trees
• Game theoretic values
• Computing game theoretic values with 

recursive minimax
• Computing game theoretic values with 

dynamic programming
• Alpha-beta search
• Playing games in real-time



Two-player zero-sum discrete finite 
deterministic games of perfect information
• Two player: well, there are two players…
• Zero Sum: In any outcome of any game Player 

A’s gains equals Player B’s losses.
• Discrete: All game states and decisions are 

discrete values.
• Finite: There are only a finite number of states 

and decisions.
• Deterministic: no chance… no dice rolls… etc
• Games: defined shortly….
• Perfect information: Both players can see the 

state, and each decision is made sequentially.



A game defined….
• A two-player zero-sum discrete finite 

deterministic game of perfect information is a 
quintuplet, (S, I, Succs, T, V) where:
– S: Finite set of states (must include sufficient 

information to deduce whose turn it is to move next)
– I: Initial state
– Succs: Function that takes a state as input and 

returns a set of states (legal positions after a move).
• Must be non-empty if its argument is not a terminal state

– T: The set of terminal states (i.e., states when game 
ends and payoff occurs)

– V: Mapping from terminal states to real numbers 
(payoff to player A and loss to player B)



Example: Nim

• You begin with some number of piles of matches.
• During a turn, the player may remove any number of 

matches from one pile
• The last person to remove a match loses
• In II-Nim, you begin with two piles each with two 

matches
• States of Nim

– A(jj,jj); A(j,jj); A(_,jj); A(jj,j); A(jj,_); A(j,j); A(_,j); A(j,_); 
A(_,_)

– B(jj,jj); B(j,jj); B(_,jj); B(jj,j); B(jj,_); B(j,j); B(_,j); B(j,_); 
B(_,_)



Nim (continued)
• States of Nim

– A(jj,jj); A(j,jj); A(_,jj); A(jj,j); A(jj,_); A(j,j); A(_,j); A(j,_); 
A(_,_)

– B(jj,jj); B(j,jj); B(_,jj); B(jj,j); B(jj,_); B(j,j); B(_,j); B(j,_); 
B(_,_)

• Common Trick: Symmetry
– Some states are trivially equivalent (e.g., A(_,jj); A(jj,_))
– Use some canonical description to make them one state

• e.g., left pile always has at least as many matches as right 
• States of Nim using Symmetry

– A(jj,jj); A(jj,j); A(jj,_); A(j,j); A(j,_); A(_,_)
– B(jj,jj); B(jj,j); B(jj,_); B(j,j); B(j,_); B(_,_)



Nim formalized
• S = {A(jj,jj); A(jj,j); A(jj,_); A(j,j); A(j,_); A(_,_); B(jj,jj); B(jj,j); 

B(jj,_); B(j,j); B(j,_); B(_,_)}
• I = A(jj,jj)
• Succs(A(jj,jj)) = {B(jj,j); B(jj,_)}
• Succs(B(jj,j)) = {A(jj,_); A(j,j); A(j,_)}
• Succs(B(jj,_)) = {A(j,_); A(_,_)}
• etc …
• T = {A(_,_), B(_,_)}
• V(A(_,_)) = +1; V(B(_,_)) = -1



Game Theoretic Value

• Definition: The game theoretic value
(a.k.a. the minimax value) of a state is the 
value of the terminal state that will be 
reached if both players play optimally.

• How can we find the minimax values for 
non-terminal states?

• Idea: Fill in the tree bottom-up.



Game Theoretic Value: Nim



The Minimax Algorithm
• Generate the full Game 

tree, storing it in 
memory

• Run through all of the 
terminal states 
assigning them values.

• Run through all 
predecessors assigning 
them values, etc, etc, 
etc…

• Question: Do we really 
need to store the whole 
game tree in memory?
– NO…  Can do a DFS-

like algorithm

• Minimax-Value(S)
– if (S is a terminal)

• return V(S)
– else

• Let S1,S2,…Sk = 
Succs(S)

• Let vi = Minimax-Value 
(Si) for each Si

• If PlayerToMove(S) = A
– return Max(vi)

• else
– return Min(vi)



Dynamic Programming (DP)
• Dynamic Programming---Russell & Norvig’s 

definition:
– “solutions to subproblems are constructed 

incrementally from those of smaller subproblems 
and are cached to avoid recomputation”

• You’ve may have encountered this in other 
classes (e.g., possibly if you’ve taken Data 
Structures, or perhaps if you’ve taken OR).



DP for Solving Games
• Consider a game with N states, where the game is 

usually of length l and where each state has b 
successors.

• Minimax requires that O(bl) states are expanded.
– This is best case as well as worst case.
– Whereas, DFS for simple search problems in the best 

case can be O(l).
• What if the number of states N is smaller than bl?

– E.g., for chess, N=10^40, while bl=10^120
• In such cases, DP is a better method, assuming 

you can afford the memory.
– Cost of DP: O(N l)



Example: DP for Chess Endgames

• Consider that there are only 4 chess 
pieces left on the board.

• With sufficient computational resources, 
you can compute, for all possible 
positions, whether it is a win for black, 
white, or a draw.

• Details next slide….



DP for Chess Endgames
• Assume there are N positions with no more than 4 

pieces left:
1. Define a 1-to-1 mapping from the N board positions to the integers 

0..N-1
2. Create a large array of length N (with 2 bits per entry).  Each 

element in the array can take on one of three values:
– W: White will eventually win.
– B: Black will eventually win
– ?: We don’t know who wins from this state

3. Mark all terminal states with their values, W or B.
4. Look through all states still marked by “?”

• If W is about to move, then
• if all successors are marked with B, mark the state B
• if any successor state is marked W, then mark the state W
• else leave the state unchanged (marked “?”)

• if B is about to move, then
• if all successors are marked with W, mark the state W
• if any successor state is marked B, then mark the state B
• else leave the state unchanged (marked “?”)

5. If 4 changed the label of at least one state, then repeat 4.
6. Any state still marked with “?” is a state from which no one can 

force a win---thus a draw



Cutting off unneeded search states

• If we knew the only 
possible outcomes 
were +1 and -1, can 
we save 
computation?

• Yes…  a lot actually
– though not much in this example
– if any successor is a forced win for the current 

player, don’t bother expanding further successors



What if possible terminal values are 
unknown?

• Do DFS, but if something is discovered that implies 
your parent would not choose you, then don’t bother 
expanding further successors.

• More generally, not just your parent, but any 
ancestors.



An ancester causing cut-off

• Suppose we’ve done a full 
DFS, expanding left-most 
successors first and that we 
are currently at the search 
state marked by the *

• What can we cut off in the 
rest of the search?

• If either player has a better 
alternative at an ancestor of 
a given search node, then it 
will not be visited.



A general cut-off rule
• In this example:

– let α=max(v1,v3,v5)
– let β=min(v6,v7)
– if β <= α, then we can be certain that 

it is a waste of time searching the 
“current node” or its sibling to the 
right

• In general:
– if at a B-move node, 

• let α =max of all A’s choices on 
current path, and 

• let β=min of all B’s choices including 
those at current node

• Cut-off if β<= α
– Converse rule if at an A-move node



Alpha-Beta 
Pruning

• Alpha-Beta Pruning
from Russell & Norvig
• Assumes players 
alternate moves

What’s the top-level 
call look like?
Max-Value(S,-∞ ,+ ∞ )



How useful is alpha-beta pruning?

• What is the best case performance of alpha-
beta?

• How much of the tree would you examine if you 
were very lucky in the order you tried 
successors?

• Best case: 
– The number of nodes you need to search in the tree is 

O(bd/2).
– The square root of the recursive minimax cost.
– Large real-sized games with a huge number of states 

are still problematic (e.g., chess)



Solving Games
• Solving a game means proving the game-theoretic value of the start state
• Some games have been solved

– by brute-force DP
• Four-in-a-row
• Some chess endgames, e.g.:

– rook and king against king (from most starting positions): win
– two bishops and king against king (from most starting positions): win
– bishop, knight, and king against king (from most starting positions): win
– two knights and king against king (from most starting positions): draw…  a few rare 

exceptions: win
– brute-force DP from end to create an end-game DB plus alpha-beta search 

from start
• nine men’s morris

– Mostly brute-force with some game specific analysis
• Connect-Four

– Checkers has been solved (draw)
• Chinook solved Checkers during a period spanning 1989-2007
• Mostly brute-force DP (via dozens of computers)
• In 1996, Chinook became first computer program to win a human world 

championship



Game Playing vs Game Solving
• Two very different activities
• Game Solving: finding the true game-theoretic 

value of a state.
• What about game playing?
• Game solving often very different from playing a 

game well.
• Example, what do real chess playing programs do?
• Some features that the search algorithms covered 

so far in this course don’t have:
– Cannot possibly find a guaranteed solution.
– Must make decisions quickly in real-time.
– It is not possible to pre-compute a solution.



Heuristic Evaluation Functions
• Popular solution: use heuristic evaluation functions
• An evaluation function maps a state to a real value.

– The larger the evaluation, the larger the true game-theoretic position is 
estimated to be.

• Note: this is not the same as the heuristic in A*… 
– no notion of admissibility
– not an estimate of path cost to reach a goal

• Search the game tree as deeply as time allows
• Leaves of tree you search are not leaves of game tree, but 

are intermediate nodes
• The values assigned to leaves are from the heuristic 

evaluation function



Heuristic Evaluation Intuition
• Visibility:

– Evaluation function will be more accurate nearer the end of the 
game.

– So worth using heuristic estimates from there.
• Filtering:

– If we used the evaluation function without searching, we’d be using 
a handful of inaccurate estimates (near the root).

– By searching, we’re combining thousands of these estimates, 
hopefully eliminating noise.

• Is this “intuition” dubious?
– Yes. Can give counter-examples…
– But often works very well in practice for real games…



Heuristic Evaluation Example
• A simple heuristic for chess:

– The typical introductory chess book will label:
• a bishop or knight worth the value of 3 pawns; a rook worth 5; a queen 

worth 9
– This leads to a simple weighted linear evaluation function

• More sophisticated chess heuristics consider other state 
features:
– good pawn structure might be worth value of a pawn
– “king safety” might be worth a pawn

• Or nonlinear evaluation functions are possible:
– two bishops might be worth slightly more than twice the value of a 

single bishop
– a bishop near the end of the game may be worth more than earlier in 

the game (e.g., more powerful in open space)
• Machine learning also applicable here



Some Other Issues for Real 
Game Playing Programs

• How to determine how far to search if you only 
have a fixed time to make a decision.

• Quiescence: What if you stop the search at a 
state where subsequent moves drastically 
change the evaluation?
– e.g., you search to depth d in chess, but at depth d+1, 

a queen is taken…
• Quiescence search: an extra bit of search to 

attempt to reach a quiescent state
– e.g., in chess, continue search only considering 

“capture” moves to resolve any uncertainties in 
position



More issues for real game playing
• The horizon problem:  

– Consider a state in which it is inevitable that your opponent will be 
able to do something bad to you.

• e.g., an inevitable queening of a pawn
– Now consider that you have some delaying tactics.
– The search algorithm won’t recognize the inevitable if the number 

of delaying steps exceeds the search depth limit…
– Thus not recognizing the badness of the search state.

• Endgames: Are easy to play well.  How?
– An end game database

• essentially a lookup table (e.g., generated by DP)
• Openings: Are easy to play well.  How?

– An opening book
– e.g., for chess, based on hundreds of years of human chess 

playing knowledge



2-player zero-sum finite NONdeterministic 
games of perfect information

• The search tree now 
includes states in which 
neither player makes a 
choice.

• Instead, a random 
decision is made 
according to a known set 
of outcome probabilities.

• Game-theoretic value if 
the expected final 
outcome if both players 
are optimal.



Expectiminimax
• Obvious generalization of minimax:

– Expectiminimax(n) =
• Value(n) if n is a terminal state
• max{s in successors(n)} Expectiminimax(s) if n is a Max node
• min{s in successors(n)} Expectiminimax(s) if n is a Min node
• Sum{s in successors(n)} P(s) Expectiminimax(s) if s is a chance 

node

• Can we use alpha-beta pruning?
– Yes…  
– for Min and Max nodes it works unchanged
– for chance nodes, if we have a bound on terminal values

• then we can place an upper bound on the value of a chance 
node without looking at all of its children



Bad News for Expectiminimax
• Assume a game with dice rolls.
• Expectiminimax considers all possible dice roll sequences, 

then it is:
– O(bmnm) where n is the number of distinct dice rolls

• Example: Backgammon
– n=21
– b usually 20, but as high as 4000 for dice rolls that are doubles
– can probably only manage about m=6 (3 moves each player)

• The equivalent of Alpha-Beta pruning helps the situation a 
bit but not much

• State-of-the-art Backgammon programs rely heavily on 
sophisticated evaluation heuristics utilizing machine learning 
techniques
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