
Affine Transformations

Affine Transformations

Homogeneous Coordinates

And related issues

Affine Transformation

● Maps parallel lines to parallel lines
● Common affine transforms

– Translation
– Rotation
– Reflection
– Scale
– Shear

Linear Combinations &
Dot Products

● A linear combination of the vectors
v1, v2, … vn
is any vector of the form
 α1v1 + α2v2 + … + αnvn

where αi is a real number (i.e. a scalar)

● Dot Product:

a real value u1v1 + u2v2 + … + unvn written as
vu •

Matrices and Matrix Operators
● A n-dimensional vector:

● Matrix Operations:
– Addition/Subtraction
– Identity
– Multiplication

● Scalar
● Matrix Multiplication

Matrix Multiplication
● Sum over rows & columns
● Recall: multiplication is not

commutative
● Identity Matrix:

1s on diagonal
0s everywhere else

2D Affine Transformations

All represented as matrix operations on vectors!
Parallel lines preserved, angles/lengths not

● Scale
● Rotate
● Translate
● Reflect
● Shear

2D Affine Transformations

● Example 1: rotation
and non uniform scale
on unit cube

● Example 2: shear first
in x, then in y

Note:
– Preserves parallels
– Does not preserve

lengths and angles

• Rigid motion of points
to new locations

• Defined with column
vectors:

as

2D Transforms: Translation

2D Transforms: Scale

• Stretching of points
along axes:

In matrix form:

or just:

2D Transforms: Rotation

• Rotation of points
about the origin

Positive Angle: CCW
Negative Angle: CW

Matrix form:

or just:

2D Transforms: Rotation
● Substitute the

1st two equations
into the 2nd two
to get the general
equation

Homogeneous Coordinates

● Observe: translation is
treated differently from
scaling and rotation

● Homogeneous
coordinates:
allows all
transformations to be
treated as matrix
multiplications Example: A 2D point (x,y) is the line

(wx,wy,w), where w is any real #, in 3D
homogenous coordinates.

To get the point, homogenize by dividing by
w (i.e. w=1)

Recall our
Affine Transformations

Matrix Representation of
2D Affine Transformations

• Translation:

• Scale:

• Rotation:

• Shear: Reflection: Fy=

Affine Transformation
 x

y

 x

y

 x

y

 x

y

 x

y

Transformation Matrix
















−

100
0cossin
0sincos

θθ
θθ

















100
10
01

b
a

















100
00
00

β
α























−
++

+
−

+

100

01
1
2

1
2

0
1

21
1

2

2

2

2

22

k
k

k
k

k
k

k

















100
010
01 s

Translations

 x

y

















100
10
01

b
a

AffineTransform class of Java 2D

void setToTranslation(double tx, double ty)

Rotations
 x

y
















−

100
0cossin
0sincos

θθ
θθ

Rotation about the origin

AffineTransform class of Java 2D

void setToRotation(double theta)
void setToRotation(double theta, double x, double y)

Scaling
 x

y

















100
00
00

β
α

AffineTransform class of Java 2D

void setToScale(double sx, double sy)

Shearing
 x

y

















100
010
01 s

AffineTransform class of Java 2D

void setToShear(double shx, double shy)

Reflection
 x

y






















−
++

+
−

+

100

01
1
2

1
2

0
1

21
1

2

2

2

2

22

k
k

k
k

k
k

k

Reflection about the line y = kx

In AffineTransform class of Java 2D, must set first two rows
of transformation matrix directly with one of:

AffineTransform(double m00, double m10, double m01,
double m11, double m02, double m12)

 AffineTransform(double[] flatmatrix)
void setTransform(double m00, double m10, double m01,

double m11, double m02, double m12)

AffineTransform class

● For object transformations:
– To transform shapes

● Shape createTransformedShape(Shape shape)
– To transform points or sets of points

● There are several methods named transform for this
– To transform vectors

● There are methods named deltaTransform
● For viewing transformations:

– Methods of the Graphics2D class
● void setTransform(AffineTransform tx)
● void transform(AffineTransform tx)

Composition of 2D Transforms
● Rotate about a point P1

– Translate P1 to origin
– Rotate
– Translate back to P1

Composition of 2D Transforms
● Scale object around point P1

– P1 to origin
– Scale
– Translate back to P1

Composition of 2D Transforms
● Scale + rotate object

around point P1 and move
to P2
– P1 to origin
– Scale
– Rotate
– Translate to P2

Composition of Transformations
● In Java 2D (AffineTransform class):

– void rotate(double theta)
– void rotate(double theta, double x, double y)
– void scale(double sx, double sy)
– void shear(double shx, double shy)
– void translate(double tx, double ty)
– void concatenate(AffineTransform tx)
– void preConcatenate(AffineTransform tx)

● The setTo* methods clears the existing transform
● The above methods append an additional

transform matrix on the right
– preConcatenate appends on the left

