Affine Transformations

Affine Transformations

Homogeneous Coordinates

And related issues

Affine Transformation

- Maps parallel lines to parallel lines
- Common affine transforms
 - Translation
 - Rotation
 - Reflection
 - Scale
 - Shear

Linear Combinations & Dot Products

- A *linear combination* of the vectors $v_1, v_2, ..., v_n$ is any vector of the form $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$ where α_i is a real number (i.e. a scalar)
- Dot Product: a real value u_1v_1 $u \cdot v = \sum_{k=1}^n u_k v_k$ $u \cdot v = \sum_{k=1}^n u_k v_k$

 $\mathcal{U} \bullet \mathcal{V}$

Matrices and Matrix Operators

• A *n*-dimensional vector:

- Matrix Operations:
 - Addition/Subtraction
 - Identity
 - Multiplication
 - Scalar
 - Matrix Multiplication

Matrix Multiplication

- Sum over rows & columns
- Recall: multiplication is not commutative
- Identity Matrix:
 1s on diagonal
 0s everywhere else

2D Affine Transformations

All represented as matrix operations on vectors! Parallel lines preserved, angles/lengths not

- Scale
- Rotate
- Translate
- Reflect
- Shear

2D Affine Transformations

- Example 1: rotation and non uniform scale on unit cube
- Example 2: shear first in x, then in y

Note:

- Preserves parallels
- Does not preserve lengths and angles

2D Transforms: Translation

 Rigid motion of points to new locations

$$x' = x + d_x$$

 $y' = y + d_y$ • Defined with column vectors:

$$\left[\begin{array}{c} x'\\y'\end{array}\right] = \left[\begin{array}{c} x\\y\end{array}\right] + \left[\begin{array}{c} d_x\\d_y\end{array}\right]$$

$$P' = P + T$$

2D Transforms: Scale

Stretching of points along axes:

$$\begin{aligned} x' &= s_x \cdot x \\ y' &= s_y \cdot y \end{aligned}$$

In matrix form:

P'

or just:

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} s_x & 0\\0 & s_y \end{bmatrix} \cdot \begin{bmatrix} x\\y \end{bmatrix}$$
$$= S \cdot P$$

2D Transforms: Rotation

 Rotation of points about the origin

$$x' = x \cdot cos \,\, heta - y \cdot sin \,\, heta$$

$$y' = x \cdot sin \,\, \theta + y \cdot cos \,\, heta$$

Positive Angle: CCW Negative Angle: CW

Matrix form:

 \mathbf{O}

r just:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$
$$P' = R \cdot P$$

2D Transforms: Rotation

 Substitute the 1st two equations into the 2nd two to get the general equation

 $\begin{aligned} x &= r \cdot \cos \phi \\ y &= r \cdot \sin \phi \end{aligned}$

$$x' = r \cdot \cos (heta + \phi) = r \cdot \cos \phi \cdot \cos \theta - r \cdot \sin \phi \cdot \sin \theta$$

 $y' = r \cdot \sin (heta + \phi) = r \cdot \cos \phi \cdot \sin \theta + r \cdot \sin \phi \cdot \cos \theta$

Homogeneous Coordinates

- Observe: *translation* is P' = P + Ttreated differently from $P' = S \cdot P$ *scaling* and *rotation* $P' = R \cdot P$
- Homogeneous
 coordinates:

allows all transformations to be treated as matrix multiplications

Example: A 2D point (x,y) is the line (wx,wy,w), where w is any real #, in 3D homogenous coordinates.

To get the point, *homogenize* by dividing by w (*i.e.* w=1)

Recall our Affine Transformations

Matrix Representation of 2D Affine Transformations

• Translation: $\begin{bmatrix} x' \end{bmatrix}$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix}.$$

- Scale:
- $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$
- Rotation:
- Shear:

on:

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\1 \end{bmatrix}$$
:

$$Reflection: F_{y} = \begin{bmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

y

Affine Transformation

Transformation Matrix

$$\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{2}{1+k^2} - 1 & \frac{2k}{1+k^2} & 0\\ \frac{2k}{1+k^2} & \frac{2k^2}{1+k^2} - 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & s & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Translations

AffineTransform class of Java 2D

void setToTranslation(double tx, double ty)

Rotations

Rotation about the origin

$\cos\theta$	S1Nθ	0
$-\sin\theta$	$\cos\theta$	0
0	0	1

AffineTransform class of Java 2D

void setToRotation(double theta)
void setToRotation(double theta, double x, double y)

Scaling

y

AffineTransform class of Java 2D

void setToScale(double sx, double sy)

Shearing

y

AffineTransform class of Java 2D

void setToShear(double shx, double shy)

Reflection

Reflection about the line y = kx $\begin{bmatrix} \frac{2}{1+k^2} - 1 & \frac{2k}{1+k^2} & 0 \\ \frac{2k}{1+k^2} & \frac{2k^2}{1+k^2} - 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

In AffineTransform class of Java 2D, must set first two rows of transformation matrix directly with one of:

AffineTransform(double m00, double m10, double m01, double m11, double m02, double m12) AffineTransform(double[] flatmatrix) void setTransform(double m00, double m10, double m01, double m11, double m02, double m12)

AffineTransform class

For object transformations:

- To transform shapes
 - Shape createTransformedShape(Shape shape)
- To transform points or sets of points
 - There are several methods named transform for this
- To transform vectors
 - There are methods named deltaTransform
- For viewing transformations:
 - Methods of the Graphics2D class
 - void setTransform(AffineTransform tx)
 - void transform(AffineTransform tx)

Composition of 2D Transforms

• Rotate about a point P1

- Translate P1 to origin
- Rotate
- Translate back to P1

$$T(x_1, y_1) \cdot R(\theta) \cdot T(-x_1, -y_1)$$

$$= \begin{bmatrix} 1 & 0 & x_1 \\ 0 & 1 & y_1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_1 \\ 0 & 1 & -y_1 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos \theta & -\sin \theta & x_1(1 - \cos \theta) + y_1 \sin \theta \\ \sin \theta & \cos \theta & y_1(1 - \cos \theta) - x_1 \sin \theta \\ 0 & 0 & 1 \end{bmatrix}$$

Composition of 2D Transforms

- Scale object around point P1
 - P1 to origin
 - Scale
 - Translate back to P1

$$T(x_1, y_1) \cdot S(S_x, S_y) \cdot T(-x_1, -y_1)$$

$$= \begin{bmatrix} 1 & 0 & x_1 \\ 0 & 1 & y_1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_1 \\ 0 & 1 & -y_1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} S_x & 0 & x_1(1 - S_x) \\ 0 & S_y & y_1(1 - S_y) \\ 0 & 0 & 1 \end{bmatrix}$$

Composition of 2D Transforms

- Scale + rotate object around point *P1* and move to *P2*
 - P1 to origin
 - Scale

Rotate
$$T(x_2, y_2) \cdot R(\theta) \cdot S(s_x, s_y) \cdot T(-x_1, -y_1)$$

- Translate to P2

Composition of Transformations

- In Java 2D (AffineTransform class):
 - void rotate(double theta)
 - void rotate(double theta, double x, double y)
 - void scale(double sx, double sy)
 - void shear(double shx, double shy)
 - void translate(double tx, double ty)
 - void concatenate(AffineTransform tx)
 - void preConcatenate(AffineTransform tx)
- The setTo* methods clears the existing transform
- The above methods append an additional transform matrix on the right
 - preConcatenate appends on the left