Colors, Paint, Etc

Color

 To understand how to make realistic images, we need a basic understanding of the physics and physiology of vision.

Basics Of Color

• Elements of color:

Basics of Color

• Physics:

- Illumination
 - Electromagnetic spectra
- Reflection
 - Material properties
 - Surface geometry and microgeometry (i.e., polished versus matte versus brushed)

Perception

- Physiology and neurophysiology
- Perceptual psychology

Physiology of Vision

- The eye:
- The retina
 - Rods
 - Cones
 - Color!

Physiology of Vision

- The center of the retina is a densely packed region called the *fovea*.
 - Cones much denser here than the *periphery*

Physiology of Vision: Cones

• Three types of cones:

- L or R, most sensitive to red light (610 nm)
- M or G, most sensitive to green light (560 nm)
- S or B, most sensitive to blue light (430 nm)

Physiology of Vision: The Retina

- Strangely, rods and cones are at the *back* of the retina, behind a mostlytransparent neural structure that collects their response.
- http://www.trueorigin.org/ retina.asp

Perception: Other Gotchas

- Color perception is also difficult because:
 - It varies from person to person
 - It is affected by adaptation (stare at a light bulb... don't)
 - It is affected by surrounding color:

Human Color Vision

Humans have 3 light sensitive pigments in their cones, called L, M, and S Each has a different spectral response curve:

 $L = \int L(\lambda) E(\lambda) d\lambda$ $M = \int M(\lambda) E(\lambda) d\lambda$ $S = \int S(\lambda) E(\lambda) d\lambda$ This leads to metamerism "Tristimulus" color theory

Combining Colors

Additive (RGB) Shining colored lights on a white ball

Subtractive (CMYK) Mixing paint colors and illuminating with white light

- CIEXYZ
- RGB
- CYMK
- sRGB

- RGB
 - Red, Green, Blue
 - Color space of most monitors
- CMYK
 - Cyan, Magenta, Yellow, Black
 - Color space for printers
- Both are device dependent
- Cannot represent all visible colors with positive coefficients

- CIEXYZ
 - A color standard
 - Three primary colors X, Y, and Z
 - Any visible color can be represented as a positive combination of X, Y, and Z
 - Really difficult to implement on physical devices
- Device-dependent

sRGB: standard RGB

- Device independent color space
- Proposed standard color space
- Red, green, and blue components
- An alpha component that specifies transparency

- Three types of cones suggests color is a 3D quantity. How to define 3D color space?
- Idea: shine given wavelength (λ) on a screen, and mix three other wavelengths (R,G,B) on same screen. Have user adjust intensity of RGB until colors are identical:

CIE Color Space

 The CIE (Commission Internationale d'Eclairage) came up with three hypothetical lights X, Y, and Z with these spectra:

Note that: $X \sim R$ $Y \sim G$ $Z \sim B$

 Idea: any wavelength λ can be matched perceptually by *positive* combinations of X,Y,Z

CIE Color Space

- The gamut of all colors perceivable is thus a three-dimensional shape in X,Y,Z
- Color = X'X + Y'Y + Z'Z

CIE Chromaticity Diagram (1931)

For simplicity, we often project to the 2D plane x+y+z=1x = X / (X+Y+Z)y = Y / (X+Y+Z)z = 1 - x - y

Device Color Gamuts

- Since X, Y, and Z are hypothetical light sources, no real device can produce the entire gamut of perceivable color
- Example: CRT monitor

RGB Color Space

 Define colors with (r, g, b) amounts of red, green, and blue

Converting Color Spaces

Simple matrix operation:

$$\begin{bmatrix} R' \\ G' \\ = \begin{bmatrix} X_R & X_G & X_B \\ Y_R & Y_G & Y_B \\ Z_R & Z_G & Z_B \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

The transformation $C_2 = M^{-1}_2 M_1 C_1$ yields RGB on monitor 2 that is equivalent to a given RGB on monitor 1

YIQ Color Space

YIQ is the color model used for color TV in America. Y is brightness, I (orange-cyan) & Q (green-magenta) are color

- Note: Y is the same as CIE's Y
- Result: Use the Y alone and backwards compatibility with B/W TV!
- These days when you convert RGB image to B/W image, the green and blue components are thrown away and red is used to control shades of grey (usually)

Converting Color Spaces

Converting between color models can also be expressed as such a matrix transform:

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} \begin{bmatrix} 0.30 & 0.59 & 0.11 \\ 0.60 & -0.28 & -0.32 \\ 0.21 & -0.52 & 0.31 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Note the relative unimportance of blue in computing the Y

Device Color Gamuts

 The RGB color cube sits within CIE color space something like this:

Device Color Gamuts

- We can use the CIE chromaticity diagram to compare the gamuts of various devices:
- Note, for example, that a color printer cannot reproduce all shades available on a color monitor

CMY(K): printing

- Cyan, Magenta, Yellow (Black) CMY(K)
- A subtractive color model

dye color	absorbs	reflects
cyan	red	blue and green
magenta	green	blue and red
yellow	blue	red and green
black	all	none

CMYK Space

RGB and **CMY**

Converting between RGB and CMY

The RGB Cube

The CMY Cube

RGB and **CMY**

Color Wheels

HSV Color Space

A more intuitive color space

- H = Hue
- S = Saturation
- V = Value (or brightness)

HSV Color Space

Computer scientists frequently use an intuitive color space that corresponds to tint, shade, and tone:

- Hue The color we see (red, green, purple)
- Saturation How far is the color from gray (pink is less saturated than red, sky blue is less saturated than royal blue)
- Brightness (Luminance) How bright is the color (how bright are the lights illuminating the object?)

HSV Color Model

Hue (H) is the angle around the vertical axisSaturation (S) is a value from 0 to 1 indicating how far from the vertical axis the color lies

Value (V) is the height of the hexcone"

HSV Color Model

Н	S	V	Color
0	1.0	1.0	Red
120	1.0	1.0	Green
240	1.0	1.0	Blue
*	0.0	1.0	White
*	0.0	0.5	Gray
*	*	0.0	Black
60	1.0	1.0	?
270	0.5	1.0	4 <mark></mark>
270	0.0	0.7	

Intuitive Color Spaces

A top-down view of hexcone

Paint

Generalizing the concept of color, Java 2D drawing applies an attribute called paint

Strokes

- Width
- End style
- Join style
- Miter limit
- Dash pattern

