Colors, Paint, Etc

Color

- To understand how to make realistic images, we need a basic understanding of the physics and physiology of vision.

Basics Of Color

- Elements of color:

Basics of Color

- Physics:
- Illumination
- Electromagnetic spectra
- Reflection
- Material properties
- Surface geometry and microgeometry (i.e., polished versus matte versus brushed)
- Perception
- Physiology and neurophysiology
- Perceptual psychology

Physiology of Vision

- The eye:
- The retina
- Rods
- Cones
- Color!

Physiology of Vision

- The center of the retina is a densely packed region called the fovea.
- Cones much denser here than the periphery

Physiology of Vision: Cones

- Three types of cones:
- L or \mathbf{R}, most sensitive to red light (610 nm)
- M or G, most sensitive to green light (560 nm)
- S or B, most sensitive to blue light (430 nm)

- Color blinaness results trom missing cone type(s)

Physiology of Vision: The Retina

- Strangely, rods and cones are at the back of the retina, behind a mostlytransparent neural structure that collects their response.
- http://www.trueorigin.org/ retina.asp

Perception: Other Gotchas

- Color perception is also difficult because:
- It varies from person to person
- It is affected by adaptation (stare at a light bulb... don't)
- It is affected by surrounding color:

Human Color Vision

Humans have 3 light sensitive pigments in their cones, called L, M, and S
Each has a different spectral response curve:

This leads to metamerism "Tristimulus" color theory

Combining Colors

Additive (RGB)
Shining colored lights on a white ball

Subtractive (CMYK)
Mixing paint colors and illuminating with white light

Color Space

- CIEXYZ
- RGB
- CYMK

$$
c=r \cdot p_{r}+g \cdot p_{g}+b \cdot p_{b}
$$

- sRGB

Source

Run

Color Space

- RGB
- Red, Green, Blue
- Color space of most monitors
- CMYK
- Cyan, Magenta, Yellow, Black
- Color space for printers
- Both are device dependent
- Cannot represent all visible colors with positive coefficients

Color Space

- CIEXYZ
- A color standard
- Three primary colors X, Y, and Z
- Any visible color can be represented as a positive combination of X, Y, and Z
- Really difficult to implement on physical devices
- Device-dependent

Color Space

- sRGB: standard RGB
- Device independent color space
- Proposed standard color space
- Red, green, and blue components
- An alpha component that specifies transparency

Color Spaces

- Three types of cones suggests color is a 3D quantity. How to define 3D color space?
- Idea: shine given wavelength (λ) on a screen, and mix three other wavelengths (R, G, B) on same screen. Have user adjust intensity of RGB until colors are identical:

CIE Color Space

- The CIE (Commission Internationale d'Eclairage) came up with three hypothetical lights X, Y, and Z with these spectra:

Note that:

$$
\begin{aligned}
& \mathrm{X} \sim \mathrm{R} \\
& \mathrm{Y} \sim \mathrm{G} \\
& \mathrm{Z} \sim \mathrm{~B}
\end{aligned}
$$

- Idea: any wavelength λ can be matched perceptually by positive combinations of X, Y, Z

CIE Color Space

- The gamut of all colors perceivable is thus a three-dimensional shape in X, Y, Z
- Color $=X^{\prime} X+Y^{\prime} Y+Z^{\prime} Z$

Human
Perceptual Gamut

CIE Chromaticity Diagram (1931)

For simplicity, we often project to the 2D plane $x+y+z=1$
$x=X /(X+Y+Z)$
$y=Y /(X+Y+Z)$
$z=1-x-y$

Device Color Gamuts

- Since X, Y, and Z are hypothetical light sources, no real device can produce the entire gamut of perceivable color
- Example: CRT monitor

Red Phosphor

Green Phosphor

Blue Phosphor

RGB Color Space

- Define colors with (r, g, b) amounts of red, green, and blue

Converting Color Spaces

Simple matrix operation:

$$
\left[\begin{array}{c}
R^{\prime} \\
G^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
X_{R} & X_{G} & X_{B} \\
Y_{R} & Y_{G} & Y_{B} \\
Z_{R} & Z_{G} & Z_{B}
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

The transformation $\mathrm{C}_{2}=\mathrm{M}^{-1}{ }_{2} \mathrm{M}_{1} \mathrm{C}_{1}$ yields $R G B$ on monitor 2 that is equivalent to a given RGB on monitor 1

YIQ Color Space

YIQ is the color model used for color TV in America. Y is brightness, I (orange-cyan) \& Q (green-magenta) are color

- Note: Y is the same as CIE's Y
- Result: Use the Y alone and backwards compatibility with B/W TV!
- These days when you convert RGB image to B/W image, the green and blue components are thrown away and red is used to control shades of grey (usually)

Converting Color Spaces

Converting between color models can also be expressed as such a matrix transform:

$$
\left[\begin{array}{l}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

Note the relative unimportance of blue in computing the Y

Device Color Gamuts

- The RGB color cube sits within CIE color space something like this:

Device Color Gamuts

- We can use the CIE chromaticity diagram to compare the gamuts of various devices:
- Note, for example, that a color printer cannot reproduce all shades available on a color monitor

CMY(K): printing

- Cyan, Magenta, Yellow (Black) - CMY(K)
- A subtractive color model
dye color absorbs reflects
cyan
magenta yellow
black
all
none

CMYK Space

RGB and CMY

- Converting between RGB and CMY

The RGB Cube
The CMY Cube

RGB and CMY

Color Wheels

HSV Color Space

- A more intuitive color space
- H = Hue
- S = Saturation
- V = Value (or brightness)

HSV Color Space

Computer scientists frequently use an intuitive color space that corresponds to tint, shade, and tone:

- Hue - The color we see (red, green, purple)
- Saturation - How far is the color from gray (pink is less saturated than red, sky blue is less saturated than royal blue)
- Brightness (Luminance) - How bright is the color (how bright are the lights illuminating the object?)

HSV Color Model

Hue (H) is the angle around the vertical axis
Saturation (S) is a value from 0 to 1 indicating how far from the vertical axis the color lies
Value (V) is the height of the hexcone"

HSV Color Model

\mathbf{H}	S	V	Color
0	1.0	1.0	Red
120	1.0	1.0	Green
240	1.0	1.0	Blue
$*$	0.0	1.0	White
$*$	0.0	0.5	Gray
$*$	$*$	0.0	Black
60	1.0	1.0	$?$
270	0.5	1.0	\vdots
270	0.0	0.7	\vdots

Intuitive Color Spaces

A top-down view of hexcone

Paint

Generalizing the concept of color, Java 2D drawing applies an attribute called paint

Source

Run

Strokes

- Width
- End style
- Join style
- Miter limit
- Dash pattern

Source

Run

