

### **Chapter 1 Objectives**

- To understand the basic objectives and scope of computer graphics
- To identify computer graphics applications
- To understand the basic structures of 2D and 3D graphics systems
- To understand evolution of graphics programming environments
- To identify common graphics APIs
- To understand the roles of Java language, Java 2D and Java 3D packages
- To identify computer graphics related fields

### **Computer Graphics: Graphics Hardware History** A Brief History Display Hardware Input Hardware In The Beginning... vector displays 2D light pen, tablet, mouse, joystick, track ball, touch panel... 1970s & 80s - CCD analog image sensor + frame grabber 1974 – E&S Picture System 1963 raster displays 1975 – E&S frame buffer 1980s – cheap frame buffers → Ivan Sutherland's □ 1990s & 2000's - CMOS digital sensor + in-camera processing → high-X imaging (dynamic range, resolution, depth of field,...) Sketchpad bit-mapped personal computers ⇒ laptops 2000s - micro-mirror projectors → digital cinema Modified oscilloscope 3D for drawing 3D trackers, 3D scanners Other developments The original CAD multiple cameras stereo, head-mounted displays active rangefinders system autostereoscopic displays other atactile, haptic, sound data gloves voice

## Computer Graphics from 66,000ft

- User Interaction/GUI
- 2D graphics and image processing
- 3D graphics/modeling
- Animation/Simulation
- Photorealism
- Virtual Reality
- Graphics Hardware
- Graphics programming environments



### 2D Graphics Raster: Vector: Pixels Drawing instructions X11 bitmap, XBM Postscript CGM X11 pixmap, XPM GIF 🗆 Fig □ TIFF DWG D PNG JPG Lossy, "fuzzy" when transforming, Non-lossy, smooth when scaling, good for photos. good for line art and diagrams.













### The Frame Buffer

- Video memory holding pixels from which the video display is refreshed
  - □ I.e. essentially a pix/bit map, a Raster image
- Usually implemented on hardware cards
   Smart frame buffers
  - Accelerated 2D and 3D interaction Color dopth (1, 9, 46, 24, 22 bit), 7 bit
  - Color depth (1, 8, 16, 24, 32 bit), Z-buffering
- Double buffering: use of a second memory space to reduce visual artifacts, i.e. swap in-andout screen buffers

# SD Rendering 1960s - the visibility problem Poterts (1963), Apple (1967), hidden-line algorithms Warnock (1969), Watkins (1970), hidden-atrice algorithms Sutherland (1974) - visibility = sorting Sutherland (1974) - visibility = sorting 1970s - raster graphics Souraud (1971) - diffuse lighting Phong (1974) - specular lighting Binn (1974) - vurved surfaces, texture Crow (1977) - anti-aliasing























# Modeler and Renderer Modeler: responsible for construction and maintenance of virtual world model Renderer: performs the rendering of a scene from a specific view on the graphics device Note: some systems don't have a clear delineation between the two

### World Space

- World Space: Either a 2D or 3D space in which objects are modeled
- The output of a graphics system is usually in 2D
- Although output in 2D form for each, 3D graphics considerably more complex

## Transformations

- Different types:
  - Object transformations: geometric transforms applied to achieve proper placement of the objects in virtual space
  - Viewing transformations: transforms used for viewing

# Transformations Affine transformations: Geometric transforms including: Translations Rotations Scalings Reflections Projective transformations: Used for 3D viewing ("projecting" a 2D rep of a 3D object)

### Views

- Views are used to "see" the model from some specific perspective
- Viewing in 2D is simple
   Object transformations and viewing transformations are usually the same
- 3D Viewing is far more complex
   Process involving mapping a 3D model to a 2D plane

### 3D Viewing Issues

- Depends on position of the view, orientation, field of view, etc
- Hidden object issues
   Hidden lines, hidden surfaces, etc
   Hidden objects should not be shown
- Light sources should be considered
- The type of "material" the objects are made of should be modeled and considered with lighting
   E.g., shiny materials, etc
- All of these things require computational overhead

# Graphics System: Components and Functions

- Modeler
- RendererHardware device
- Hardware device
   Virtual World
- View
- GeometryTransformation
- Illumination
- Interaction
- Animation

## Graphics Programming Environment

Platform Independent (Java 2D and Java 3D) Graphics Standard (GKS, PHIGS, OpenGL) OS (WIN32, X, Mac OS) Hardware (direct register/video buffer programming)

### Hardware Level

- Program the graphics hardware directly
- Typically written in low-level languages
- Manipulate the hardware registers and video buffers
- Highly machine-dependent

### Example: MS-DOS graphics program

### Source

Determination of the pixels on a circle. From the current pixel, the next pixel will be either to the "east" or to the "southeast".

|   |   |   | 1 |   |   |   |   |    |   |        |   |   |   | 1 |     |
|---|---|---|---|---|---|---|---|----|---|--------|---|---|---|---|-----|
|   | - |   |   |   |   |   | - |    |   |        |   |   | - |   | _   |
| - | - | - | - | - | - | - | - | -  | - | -      | - | - | - | - | -   |
| _ |   |   |   |   | - | - | _ | _  |   |        |   |   | _ |   |     |
|   |   |   |   |   |   |   |   |    |   |        |   |   |   |   |     |
|   |   |   | — |   |   |   |   | r~ |   | (E)    |   |   |   | — | - T |
| - | - |   |   |   |   |   | - |    | _ | $\sim$ |   |   | - |   |     |
| - | - | - | - |   | - | - | - | -  |   | $\sim$ | - | - | - | - | -   |
| _ | _ |   |   | _ |   |   | _ |    |   | _      |   |   | _ |   |     |
|   |   |   |   |   |   |   |   |    |   |        |   |   |   |   |     |
|   |   |   |   |   |   |   |   |    |   |        |   |   |   |   |     |
| - | - | - | - |   |   |   | - | -  | - |        |   |   | - | - | -   |
| _ | - | - |   |   | - | _ | _ | -  |   |        | - | _ | _ |   | -   |
|   |   |   |   |   |   |   |   |    |   |        |   |   |   |   |     |
|   |   |   |   |   |   |   |   |    |   |        |   |   |   |   |     |
|   | - |   |   |   |   |   |   |    |   |        |   |   |   |   |     |



# GKS and PHIGS

Graphics Kernel System

- International standard (ISO 7942 1985)
- 2D graphics
- Common language binding: FORTRAN
- Example: A FORTRAN GKS program to draw a circle
   Bindings in C and Pascal are also available

### Source

Programmer's Hierarchical Interactive Graphics System

ISO 9592 19913D graphics



| 8-                            |  |
|-------------------------------|--|
| OpenGL                        |  |
| 3D Example: A spinning sphere |  |
|                               |  |
|                               |  |
| Source                        |  |
| Run                           |  |
|                               |  |
|                               |  |

| ava                          |                     |
|------------------------------|---------------------|
| Java 3D based graphics syste | ems                 |
| Graphics application         |                     |
| Java 2D and other Java APIs  | Java 3D             |
| Java VM                      | OpenGL (or DirectX) |
| OS                           |                     |
| Display driver               |                     |
| Graphics card                |                     |
| Display                      |                     |
| -                            |                     |
|                              |                     |
|                              |                     |









# Other Fields Related to Graphics

Image processing

- Computer vision
   Mathematics

   Analytic geometry
  - Linear algebra