
1

Introduction to
Computer Graphics

Chapter 1 Objectives� To understand the basic objectives and scope of
computer graphics� To identify computer graphics applications� To understand the basic structures of 2D and 3D
graphics systems� To understand evolution of graphics programming
environments� To identify common graphics APIs� To understand the roles of Java language, Java 2D
and Java 3D packages� To identify computer graphics related fields

Computer Graphics:
A Brief History� In The Beginning…
1963
Ivan Sutherland’s
Sketchpad� Modified oscilloscope
for drawing� The original CAD
system

Graphics Hardware History

Display Hardware� vector displays� 1974 – E&S Picture System� raster displays� 1975 – E&S frame buffer� 1980s – cheap frame buffers →
bit-mapped personal computers� 1990s – liquid-crystal displays
→ laptops� 2000s – micro-mirror projectors
→ digital cinema� Other developments� stereo, head-mounted displays� autostereoscopic displays� tactile, haptic, sound

Input Hardware� 2D� light pen, tablet, mouse, joystick,
track ball, touch panel…� 1970s & 80s - CCD analog image
sensor + frame grabber� 1990s & 2000’s - CMOS digital
sensor + in-camera processing
→ high-X imaging (dynamic
range, resolution, depth of field,…)� 3D� 3D trackers, 3D scanners� multiple cameras� active rangefinders� other� data gloves� voice

Computer Graphics from 66,000ft� User Interaction/GUI� 2D graphics and image
processing� 3D graphics/modeling� Animation/Simulation� Photorealism� Virtual Reality� Graphics Hardware� Graphics programming
environments

Example of a JPG image.

2D Graphics� Raster:

Pixels� X11 bitmap, XBM� X11 pixmap, XPM� GIF� TIFF� PNG� JPG

Lossy, “fuzzy” when transforming,
good for photos.

� Vector:

Drawing instructions� Postscript� CGM� Fig� DWG

Non-lossy, smooth when scaling,
good for line art and diagrams.

2

2D Graphics� Raster: � Vector:

Adobe Photoshop:
2D Raster Graphics

2D Raster Graphics Adobe Illustrator:
2D Vector Graphics

2D Vector Graphics Graphics Displays� Nearly all
video displays
today are
RASTER� How do we
go from bits
and shapes
to pixels on a
raster display?

3

The Frame Buffer� Video memory holding pixels from which the
video display is refreshed� I.e. essentially a pix/bit map, a Raster image� Usually implemented on hardware cards� Smart frame buffers� Accelerated 2D and 3D interaction� Color depth (1, 8, 16, 24, 32 bit), Z-buffering� Double buffering: use of a second memory
space to reduce visual artifacts, i.e. swap in-and-
out screen buffers

3D Rendering� 1960s - the visibility problem� Roberts (1963), Appel (1967) -
hidden-line algorithms� Warnock (1969), Watkins (1970) -
hidden-surface algorithms� Sutherland (1974) - visibility =
sorting� 1970s - raster graphics� Gouraud (1971) - diffuse lighting� Phong (1974) - specular lighting� Blinn (1974) - curved surfaces,
texture� Catmull (1974) - Z-buffer hidden-
surface algorithm� Crow (1977) - anti-aliasing

3D Rendering

Toward Reality� early 1980s - global
illumination� Whitted (1980) - ray tracing� Goral, Torrance et al. (1984),

Cohen (1985) - radiosity� Kajiya (1986) - the rendering
equation� late 1980s - photorealism� Cook (1984) - shade trees� Perlin (1985) - shading
languages� Hanrahan and Lawson (1990)
- RenderMan

Present Developments� early 1990s - non-
photorealistic rendering� Drebin et al. (1988), Levoy

(1988) - volume rendering� Haeberli (1990) -
impressionistic paint
programs� Salesin et al. (1994-) -
automatic pen-and-ink
illustration� Meier (1996) - painterly
rendering

Application Areas� Entertainment� CAD/CAM� Scientific &
Medical
visualization� Training &
Education� Synthetic Realities� VR, commerce, etc� Art and design

Pixar

Lord of the Rings Troll

4

Application Areas� Entertainment� CAD/CAM� Scientific &
Medical
visualization� Training &
Education� Synthetic Realities� VR, commerce, etc� Art and design

)θF(θG(θθθ,VθθM &&&& ,))()(+++⋅=sτ

Regli et al @ Drexel

Application Areas� Entertainment� CAD/CAM� Scientific &
Medical
Visualization� Training &
Education� Synthetic Realities� VR, commerce, etc� Art and design

Lombeyda, Breen @ CalTech

http://space.jpl.nasa.gov/

Application Areas� Entertainment� CAD/CAM� Scientific
visualization� Training &
Education� Synthetic Realities� VR, commerce, etc� Art and design

Boeing

Hamburg U, Germany

Application Areas� Entertainment� CAD/CAM� Scientific
visualization� Training &
Education� Synthetic Realities� VR, commerce, etc� Art and design

FakeSpace Cave

Telepresence

Id Software

UCLA

Application Areas� Entertainment� CAD/CAM� Scientific
visualization� Training &
Education� Synthetic Realities� VR, commerce, etc� Art and design

Kimmel Center

5

Computer Graphics
Modeling: Creating a virtual world.

Rendering: Generating a visual image of a scene.

Rendering

Virtual world model
Image of a scene

Modeler and Renderer� Modeler: responsible for construction and
maintenance of virtual world model� Renderer: performs the rendering of a
scene from a specific view on the graphics
device� Note: some systems don’t have a clear
delineation between the two

World Space� World Space: Either a 2D or 3D space in
which objects are modeled� The output of a graphics system is usually
in 2D� Although output in 2D form for each, 3D
graphics considerably more complex

Transformations� Different types:�Object transformations: geometric
transforms applied to achieve proper
placement of the objects in virtual space�Viewing transformations: transforms used
for viewing

Transformations� Affine transformations:�Geometric transforms including:� Translations� Rotations� Scalings� Reflections�Projective transformations:� Used for 3D viewing (“projecting” a 2D rep of a 3D
object)

Views� Views are used to “see” the model from
some specific perspective� Viewing in 2D is simple�Object transformations and viewing

transformations are usually the same� 3D Viewing is far more complex�Process involving mapping a 3D model to a
2D plane

6

3D Viewing Issues� Depends on position of the view, orientation,
field of view, etc� Hidden object issues�Hidden lines, hidden surfaces, etc�Hidden objects should not be shown� Light sources should be considered� The type of “material” the objects are made of
should be modeled and considered with lighting� E.g., shiny materials, etc� All of these things require computational
overhead

Graphics System:
Components and Functions� Modeler� Renderer� Hardware device� Virtual World� View

� Geometry� Transformation� Illumination� Interaction� Animation

Graphics Programming
Environment

Hardware (direct register/video buffer programming)

OS (WIN32, X, Mac OS)

Graphics Standard (GKS, PHIGS, OpenGL)

Platform Independent (Java 2D and Java 3D)

Hardware Level

Determination of the pixels on
a circle. From the current pixel,
the next pixel will be either to
the “east” or to the “southeast”.

E

SE

� Program the graphics hardware directly� Typically written in low-level languages � Manipulate the hardware registers and video buffers� Highly machine-dependent� Example: MS-DOS graphics programSource

Operating System Level� Program through OS graphics support � Do not directly manipulate graphics hardware� Portable on the same platform� Example: WIN32

Source Run
hdc = BeginPaint (hwnd, &ps);

GetClientRect (hwnd, &rc);

cx = (rc.left + rc.right)/2;

cy = (rc.top + rc.bottom)/2;

if (rc.bottom - rc.top < rc.right - rc.left)

r = (rc.bottom - rc.top) / 2 - 20;

else

r = (rc.right - rc.left) / 2 - 20;

Ellipse(hdc, cx-r, cy-r, cx+r, cy+r);

EndPaint (hwnd, &ps);

GKS and PHIGS
Graphics Kernel System

Programmer’s Hierarchical Interactive Graphics System

� International standard (ISO 7942 1985)� 2D graphics� Common language binding: FORTRAN� Example: A FORTRAN GKS program to draw a circle� Bindings in C and Pascal are also available� ISO 9592 1991� 3D graphics

Source

7

OpenGL

Source
� Popular 2D/3D graphics API � over 200 functions� Common language binding: C� Example: An OpenGL program to draw a circle

GLU

GLUT

GLRun
OpenGL

Source
3D Example: A spinning sphere

Run
Java

Java 3D

OpenGL (or DirectX)

Java 2D and other Java APIs

Display driver

Graphics card

Display

Graphics application

Java VM

OS

Java 3D based graphics systems

Java Programming Language� Simple� Object Oriented (OOP)� Write once, run anywhere� Multithreaded

Java graphics: AWT / Swing

AWT ExampleSourceRun
JOGL� OpenGL Java language binding� No OOP modeler

SourceRun
1. Create a GLCanvasor GLJPanelobject through the

GLDrawableFactoryclass.
2. Add a GLEventlistener to the canvas object.
3. Implement the listener by implementing the four methods: init,

display, reshape, and displayChanged.

Java 2D� Standard package of Java 2 platform� Improvements over AWT� Graphics2D class � Java 2D’s rendering
engineSourceRun

8

Java 3D� High-level API� Scene graph� Modeler/Renderer� Java IntegrationSourceRun

TG

������������
������������

Rotator

Appearance

Texture2
D

Background

Bounds
Sphere

Geometry

Texture
coordinates

TG

Appearance Text3D

L

BG

L

S

Material

View

Branch

Other Fields Related to
Graphics� Image processing� Computer vision� Mathematics�Analytic geometry�Linear algebra

