
Java 3D Geometry

Points and Vectors

()nxxx ,,, 21 

Homogeneous coordinates ()wzyx ,,,

Points and Vectors
 Tuple3f

Point3f

Color3f

TexCoord3f

Vector3f

Tuple3d

Point3d

Vector3d

Tuple3i

Point3i

Tuple4f

Point4f

Color4f

TexCoord4f

Vector4f

Tuple4d

Point4d

Vector4d

Tuple4i

Point4i

Quat4f

Quat4d

Java's javax.vecmath package
● javax.vecmath package

– Classes related to vectors and matrices
● Java 3D makes extensive use of these classes
● Naming convention of classes

– Class names end with: [34][fdib]
● The 3 or 4 indicates how many components
● The fdib indicates types used

– The f,d,i,b are for float, double, int, and byte
– Tuple* are abstract base classes
– Color* are for colors
– Point* and Vector* are geometric points and vectors
– TexCoord* are for texture-mapping coordinates
– Quat* are for quaternions

The vector classes' methods
● Methods for standard operations
● The “Tuple” base classes

– Methods: add and sub for adding and subtracting
tuples

– Method scale for scaling a tuple
– Method negate negates the tuple's components

● The “Point” classes
– Methods for finding distance to other points

● The “Vector” classes
– Methods dot and angle computes dot product and

angle with another vector
– Method cross computes cross product of 2 vectors
– Method length computes length of vector

Surface Equations

0),,(=zyxF

),(
),(
),(

vuhz
vugy
vufx

=
=
=

Implicit equation

Parametric equation

Surface Represented with
Polygons

Complex surfaces approximated with a mesh of polygons
e.g., a mesh of triangles or quadrilaterals

Shape3D Node

A Shape3D leaf node usually
references Geometry and
Appearance objects

Shape3D

Geometry Appearance

Geometry Classes
 Geometry

CompressedGeometry

GeometryArray

IndexedGeometryArray

LineArray

Raster

Text3D

GeometryStripArray

PointArray

QuadArray

TriangleArray

LineStripArray

TriangleFanArray

TriangleStripArray

IndexedLineArray

IndexedPointArray

IndexedQuadArray

IndexedTriangleArray

IndexedGeometryStripArray

IndexedLineStripArray

IndexedTriangleFanArray

IndexedTriangleStripArray

PointArray

PointArray pa = new PointArray(3, GeometryArray.COORDINATES);
pa.setCoordinate(0, new Point3f(0f, 0f, 0f));
pa.setCoordinate(1, new Point3f(1f, 0f, 0f));
pa.setCoordinate(2, new Point3f(0f, 1f, 0f));

● A bit mask indicating type of vertex data
● Can also include: NORMALS, COLOR_3, COLOR_4, and
some texture related properties

LineArray

LineArray la = new LineArray(6, GeometryArray.COORDINATES);
Point3f[] coords = new Point3f[6];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 1f, 0f);
coords[2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(2f, 1f, 0f);
coords[4] = new Point3f(2f, 1f, 0f);
coords[5] = new Point3f(3f, 0f, 0f);
la.setCoordinates(0, coords);

TriangleArray

TriangleArray ta = new TriangleArray(6,
GeometryArray.COORDINATES);
Point3f[] coords = new Point3f[6];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 1f, 0f);
coords[2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(1f, 0f, 0f);
coords[4] = new Point3f(2f, 1f, 0f);
coords[5] = new Point3f(3f, 0f, 0f);
ta.setCoordinates(0, coords);

QuadArray

QuadArray qa = new QuadArray(8, GeometryArray.COORDINATES);
Point3f[] coords = new Point3f[8];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 0f, 0f);
coords[2] = new Point3f(1f, 1f, 0f);
coords[3] = new Point3f(0f, 1f, 0f);
coords[4] = new Point3f(1f, 1f, 0f);
coords[5] = new Point3f(0f, 1f, 0f);
coords[6] = new Point3f(0f, 1f, 1f);
coords[7] = new Point3f(1f, 1f, 1f);
qa.setCoordinates(0, coords);

StripArray

v0

v1

v2

v3

v4

v5

v6

v7

v8

strip vertex counts: 5, 4

v0
v1

v2
v3 v4

v5

v6
v7

v8

strip vertex counts: 6, 4 v9

TriangleStripArray

TriangleFanArray

IndexedArray

int[] stripIndexCounts = {4, 4};
IndexedTriangleStripArray itsa = new IndexedTriangleStripArray(7,
 GeometryArray.COORDINATES, 8, stripIndexCounts);
Point3f[] coords = new Point3f[7];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(0f, 1f, 0f);
coords[2] = new Point3f(1f, 1f, 0f);
coords[3] = new Point3f(2f, 1f, 0f);
coords[4] = new Point3f(-1f, 0f, 0f);
coords[5] = new Point3f(-1f, -1f, 0f);
coords[6] = new Point3f(-2f, -1f, 0f);
itsa.setCoordinates(0, coords);
int[] indices = {0, 1, 2, 3, 0, 4, 5, 6};
itsa.setCoordinateIndices(0, indices);

The Tetrahedron

● One of five regular polyhedra
● Vertices:

– (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, -1, 1)
● Indices:

– 0,1,2, 0,3,1, 1,3,2, 2,3,0
● Normals:

– (1, 1, -1), (1, -1, 1), (-1, -1, -1), (-1, 1, 1)

Surface Normals
 Normal

Tangent
plane

Surface

21 vv ×

2v

1v 0P

1P

2P

The surface normal at a point is
perpendicular to the tangent plane

The cross product is useful for
calculating normals

Normal Calculation for a Smooth
Surface

),,()/,/,/(
),,()/,/,/(

vvv

uuu

hgfdvdzdvdydvdx
hgfdudzdudydudx

=
=

),,(),,(vvvuuu hgfhgfn ×=

),(
),(
),(

vuhz
vugy
vufx

=
=
=Parametric equation

Derivatives

Normal

Normal Calculation for a Geometric
Object with Planar Surfaces

● Given 3 distinct
points on the plane,
P

0
, P

1
, and P

2
.

● Can define 2 vectors
in the plane with:
– V

1
 = P

1 –
 P

0
.

– V
2
 = P

2 –
 P

0
.

● The normal for the
plane is then:
– V

1
× V

2

● Assume p0, p1, and p2 are
Point3f
p1.sub(p0);
p2.sub(p0);
Vector3f v1 = new Vector3f(p1);
Vector3f v2 = new Vector3f(p2);
Vector3f normal = new

Vector3f();
normal.cross(v1,v2);
normal.normalize();

GeometryInfo

● Last time we saw one way to specify 3D
geometry
– Extend one of the classes in the Geometry

hierarchy
● e.g., IndexedTriangleArray

– Pass an object of your class to the constructor of
Shape3D

● Another more general way of defining 3D
geometry is to use the GeometryInfo class

GeometryInfo

● Why use GeometryInfo?
– In addition to Triangle and Quadrilateral arrays,

can also specify geometry with Polygon arrays
– Can use a NormalGenerator to automate the

generation of the normal vectors
– Can use a Stripifier to turn the geometry into a

polygon strip array.
● Process:

– Extend Shape3D
● Construct a GeometryInfo object

– Specify the geometry
● Use the NormalGenerator and the Stripifier
● Call the setGeometry method of Shape3D

– Construct an object of your shape class

GeometryInfo Class

v0

v1 v2

v4

v3

v8

v5 v6

v7

v9 v10

v11

v12 v13

v14 v15

strip counts: 5, 4, 3, 4 countour counts: 1, 3

NormalGenerator
Stripifier

Utility classes

Polygon Mesh

njncdjcv
mimabiau

j

i

,,2,1,0,/)(
,,2,1,0,/)(





=−+=
=−+=

),(),,(),,(),,(1111 ++++ jijijiji vuvuvuvu

Vertices

Quadrilateral path

We can define a 3D surface with a parametric equation in 2
independent variables

x = f(u,v)
y = g(u,v)
z = h(u,v)

with a <= u <= b and c <= v <= d

Each quadrilateral patch can be further divided into 2 triangles

Primitives

Primitive

Box

Cone

Sphere

Cylinder

Group

Font and Text

Font font = new Font(“Serif”, Font.BOLD, 1);
FontExtrusion extrusion = new FontExtrusion();
Font3D font3d = new Font3D(font, extrusion);
Text3D text = new Text3D(font3d, “Hello”);

Text2D text = new Text2D(“Hello”, Color.blue,
“Serif”, 16, Font.Italic);

Create a Text3D object

Create a Text2D object

Appearance Classes

 Appearance

ColoringAttributes

LineAttributes

PolygonAttributes

PointAttributes

RenderingAttributes

Material

Texture

TexCoordGeneration

TextureAttributes

TextureUnitState

TransparencyAttributes

Shading Model

✦ Flat shading: a fixed color for a face
✦ Gouraud shading: interpolating vertex colors

Coloring

● The lighting model is applied if the Appearance references a valid
Material object and the Material object enables lighting.

● If vertex colors are present and not ignored, they are used to render
the polygons. The enabling of the vertex colors is controlled by a
RenderingAttributes object. When vertex colors are used, the shading
mode of the polygons is determined by the ColoringAttributes object. A
flat shading assigns a single color to a polygon and a Gouraud
shading interpolates the vertex colors in the interior of a polygon.

● If lighting is not enabled and the vertex colors of the geometry are not
present or ignored, the color specified by the ColoringAttributes object
will be used for coloring the geometry.

	Slide 1
	Points and Vectors
	Slide 3
	Slide 4
	Slide 5
	Surface Equations
	Surface Represented with Polygons
	Shape3D Node
	Geometry Classes
	PointArray
	LineArray
	TriangleArray
	QuadArray
	StripArray
	IndexedArray
	The Tetrahedron
	Surface Normals
	Normal Calculation
	Slide 19
	Slide 20
	Slide 21
	GeometryInfo Class
	Polygon Mesh
	Primitives
	Font and Text
	Appearance Classes
	Shading Model
	Coloring

