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Java's javax.vecmath package
● javax.vecmath package

– Classes related to vectors and matrices
● Java 3D makes extensive use of these classes
● Naming convention of classes

– Class names end with:  [34][fdib]
● The 3 or 4 indicates how many components
● The fdib indicates types used

– The f,d,i,b are for float, double, int, and byte
– Tuple* are abstract base classes
– Color* are for colors
– Point* and Vector* are geometric points and vectors
– TexCoord* are for texture-mapping coordinates
– Quat* are for quaternions



The vector classes' methods
● Methods for standard operations
● The “Tuple” base classes

– Methods: add and sub for adding and subtracting 
tuples

– Method scale for scaling a tuple
– Method negate negates the tuple's components

● The “Point” classes
– Methods for finding distance to other points

● The “Vector” classes
– Methods dot and angle computes dot product and 

angle with another vector
– Method cross computes cross product of 2 vectors
– Method length computes length of vector



Surface Equations
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Surface Represented with 
Polygons

Complex surfaces approximated with a mesh of polygons
e.g., a mesh of triangles or quadrilaterals



Shape3D Node

A Shape3D leaf node usually 
references Geometry and 
Appearance objects
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Geometry Classes
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PointArray

 

PointArray pa = new PointArray(3, GeometryArray.COORDINATES);
pa.setCoordinate(0, new Point3f(0f, 0f, 0f));
pa.setCoordinate(1, new Point3f(1f, 0f, 0f));
pa.setCoordinate(2, new Point3f(0f, 1f, 0f));

● A bit mask indicating type of vertex data
● Can also include: NORMALS, COLOR_3, COLOR_4, and 
some texture related properties



LineArray

 

LineArray la = new LineArray(6, GeometryArray.COORDINATES);
Point3f[] coords = new Point3f[6];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 1f, 0f);
coords[2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(2f, 1f, 0f);
coords[4] = new Point3f(2f, 1f, 0f);
coords[5] = new Point3f(3f, 0f, 0f);
la.setCoordinates(0, coords);



TriangleArray

 

TriangleArray ta = new TriangleArray(6, 
GeometryArray.COORDINATES);
Point3f[] coords = new Point3f[6];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 1f, 0f);
coords[2] = new Point3f(1f, 0f, 0f);
coords[3] = new Point3f(1f, 0f, 0f);
coords[4] = new Point3f(2f, 1f, 0f);
coords[5] = new Point3f(3f, 0f, 0f);
ta.setCoordinates(0, coords);



QuadArray
 

QuadArray qa = new QuadArray(8, GeometryArray.COORDINATES);
Point3f[] coords = new Point3f[8];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(1f, 0f, 0f);
coords[2] = new Point3f(1f, 1f, 0f);
coords[3] = new Point3f(0f, 1f, 0f);
coords[4] = new Point3f(1f, 1f, 0f);
coords[5] = new Point3f(0f, 1f, 0f);
coords[6] = new Point3f(0f, 1f, 1f);
coords[7] = new Point3f(1f, 1f, 1f);
qa.setCoordinates(0, coords);



StripArray
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IndexedArray
 

int[] stripIndexCounts = {4, 4};
IndexedTriangleStripArray itsa = new IndexedTriangleStripArray(7,
  GeometryArray.COORDINATES, 8, stripIndexCounts);
Point3f[] coords = new Point3f[7];
coords[0] = new Point3f(0f, 0f, 0f);
coords[1] = new Point3f(0f, 1f, 0f);
coords[2] = new Point3f(1f, 1f, 0f);
coords[3] = new Point3f(2f, 1f, 0f);
coords[4] = new Point3f(-1f, 0f, 0f);
coords[5] = new Point3f(-1f, -1f, 0f);
coords[6] = new Point3f(-2f, -1f, 0f);
itsa.setCoordinates(0, coords);
int[] indices = {0, 1, 2, 3, 0, 4, 5, 6};
itsa.setCoordinateIndices(0, indices);



The Tetrahedron

● One of five regular polyhedra
● Vertices: 

– (1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, -1, 1) 
● Indices:

– 0,1,2,   0,3,1,   1,3,2,   2,3,0 
● Normals:

– (1, 1, -1), (1, -1, 1), (-1, -1, -1), (-1, 1, 1)



Surface Normals
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Tangent 
plane 

Surface 

 
21 vv ×  

2v
 

1v  0P  

1P
 

2P  

The surface normal at a point is 
perpendicular to the tangent plane

The cross product is useful for 
calculating normals



Normal Calculation for a Smooth 
Surface
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Normal Calculation for a Geometric 
Object with Planar Surfaces

● Given 3 distinct 
points on the plane, 
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in the plane with:
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● The normal for the 
plane is then:
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● Assume p0, p1, and p2 are 
Point3f
p1.sub(p0);
p2.sub(p0);
Vector3f v1 = new Vector3f(p1);
Vector3f v2 = new Vector3f(p2);
Vector3f normal = new 

Vector3f();
normal.cross(v1,v2);
normal.normalize();



GeometryInfo

● Last time we saw one way to specify 3D 
geometry
– Extend one of the classes in the Geometry 

hierarchy
● e.g., IndexedTriangleArray

– Pass an object of your class to the constructor of 
Shape3D

● Another more general way of defining 3D 
geometry is to use the GeometryInfo class



GeometryInfo

● Why use GeometryInfo?
– In addition to Triangle and Quadrilateral arrays, 

can also specify geometry with Polygon arrays
– Can use a NormalGenerator to automate the 

generation of the normal vectors
– Can use a Stripifier to turn the geometry into a 

polygon strip array.
● Process:

– Extend Shape3D
● Construct a GeometryInfo object

– Specify the geometry
● Use the NormalGenerator and the Stripifier
● Call the setGeometry method of Shape3D

– Construct an object of your shape class



GeometryInfo Class
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Polygon Mesh
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Vertices

Quadrilateral path

We can define a 3D surface with a parametric equation in 2 
independent variables

x = f(u,v)
y = g(u,v)
z = h(u,v)

with a <= u <= b and c <= v <= d

Each quadrilateral patch can be further divided into 2 triangles



Primitives
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Font and Text

Font font = new Font(“Serif”, Font.BOLD, 1);
FontExtrusion extrusion = new FontExtrusion();
Font3D font3d = new Font3D(font, extrusion);
Text3D text = new Text3D(font3d, “Hello”);

Text2D text = new Text2D(“Hello”, Color.blue, 
“Serif”, 16, Font.Italic);

Create a Text3D object

Create a Text2D object



Appearance Classes

 Appearance 

ColoringAttributes 

LineAttributes 
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RenderingAttributes 

Material 

Texture 
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Shading Model

✦ Flat shading: a fixed color for a face
✦ Gouraud shading: interpolating vertex colors



Coloring

● The lighting model is applied if the Appearance references a valid 
Material object and the Material object enables lighting. 

● If vertex colors are present and not ignored, they are used to render 
the polygons. The enabling of the vertex colors is controlled by a 
RenderingAttributes object. When vertex colors are used, the shading 
mode of the polygons is determined by the ColoringAttributes object. A 
flat shading assigns a single color to a polygon and a Gouraud 
shading interpolates the vertex colors in the interior of a polygon.

● If lighting is not enabled and the vertex colors of the geometry are not 
present or ignored, the color specified by the ColoringAttributes object 
will be used for coloring the geometry.
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