Java 3D’'s Scene Graphs

Basic elements of Graph Theory
Examples of where graphs are used in graphics

And then, Java 3D's Scene Graphs

I The basics of Graph Theory

- What it is...
- Some of its applications...
- Why we care about graphs in a course on
computer graphics
e Some computer graphics applications of
graph theory

e Java 3D's Scene Graphs

I * Graph Theory:

I Graph Theory

* Graph Theory:
- Mathematical field which uses a structure called a graph
I to study the interrelationship of entities
* Graph:
- A mathematical structure consisting of:

* Nodes (also known as vertices and sometimes points)
e Edges (sometimes less commonly called arcs or lines)

- A Graph is formally defined with the notation:
¢« G=(V, E)

- Where, V is a set of nodes (or vertices), e.g.,
eV={a,b,cde}

- And E is a set of edges where an edge is a pair of

vertices
* E={(a,c), (be)(a,d), (e,a)}

I Examples of Graphs

* Graphs can be visualized with circles or some
other shape for nodes or vertices and lines for

—V {a,b,c,d e}
-E={(a0), (be) (ad), (e.a)}

I Directed Graphs

* A directed graph (or digraph) is a graph but
with directions on the edges
I * E.g.,
-V={a,b,cd e}
-E={(ac), (b,e), (a,d), (e,a), (e,d), (d,b);}

ﬁ’v‘@
\ 0
c

I Paths

that follow the edges of the graph

* Example path:

- A path from Ato B
e AD,B

I * A Path in a graph is a sequence of nodes

\ 0
c

I Cycles

same node more than once

 Example of a cycle
- B,E,D,B
* Another example

_ADBEA 36’.‘@

I * A cycle in a graph is a path that includes the

\‘ D
©

I A Connected Graph

* A graph is connected if for every pair of
nodes in the graph there exists a path if you
ignore directions on the edges

I * Graphs can be connected or disconnected

onnected a Not Connected a
e2 || ene
B \ 0 B \ 0

< IS

Degree of a Node

* The degree of a node is the number of edges
connected to it

* The in-degree of a node in a digraph is the
number of edges that end at that node

* The out-degree of a node Iin a digraph is the
number of edges that begin at that node
- Degree(E) =3

- InDegree(E) = 1 @.ﬁ
Py

— OutDegree(E) = 2

I An Acyclic Graph

* A graph without cycles is called an acyclic
I graph

I A DAG

* A DAG (directed acyclic graph) is a digraph
I that contains no cycles

A DAG Not a DAG

LS

© @

I A Tree
e A Tree is:
I - a DAG...
- that is connected...
- And for which no node has an in-degree greater
than 1
A Tree Not a Tree

.

© ©

I Leafs and Interior Nodes

e An Interior node Is a node In a tree whose

I * Aleafin a tree is a node whose outdegree is 0

outdegree is at least 1
- E.g., Band C are leafs
- A,D,and E are interior

A Tree

©

A Forest

* AForestis a:
- DAG...
- for which no node has an in-degree greater than 1...
- But is not necessarily connected

* Note any graph that is a tree Is also a forest

A Forest (but not a tree) A Tree (and also a forest)

A o
\ D \ D
o e

©)

Visualizing a Tree

* The root of a tree is the one (and only one node)
I of the tree whose indegree is 0.

* The children of a node in a tree are the nodes at
the ends of the outgoing edges of the node

* Trees are usually visualized with the root at the
top, its children lined up below, and so forth

Visualizing a Tree

This Tree

©

Would be visualized like:

I What are Graphs Used For

* Representing a network
- Nodes: computers, routers, etc
I - Edges: direct connections
* Cluster Computing
- Representing the interconnectedness of the nodes
(computers) of the cluster
e Social Network Analysis
- Nodes: people or other entities
- Edges: represent various types of relationships
» Software Engineering
- e.g., UML diagrams
* Chemistry:
- Representing molecular structures

Graphs in Computer Graphics

* Constructive Area Geometry: some
I Implementations use graphs to represent the
operations and primitive shapes, etc

O

Graphs in Solid Modeling

* Constructive Solid Geometry:
- The 3D equivalent of constructive area geometry
- Almost always implemented as a graph structure

=08

Scene Graph: Legend

Virtual Universe O

Locale

Group Node

Leaf Node

Node Component

Other Object

Parent-Child Link

Reference

Scene Graph

Scene Graph: Classes

SceneGraphObject VirtualUniverse
L L
— Node SimpleUniverse
Group Locale
Leaf

— NodeComponent

Superstructure

VirtualUniverse — the universe
HiResCoord — 256bit fixed point numbers
Locale — a “smaller” space

I VirtualUniverse — the universe
HiResCoord — 256bit fixed point numbers
I *Why 256Dbit fixed point?
Fixed point in the middle
128 bits for integer part
128 bits for the fractional part
Allows for distances of up to 2'" meters if units are in meters
Resolution can be as fine as 27'° meters
«Can model anything in the universe
*E.g., distance from Earth to Sun is about 2°" meters
*E.g., radius of a proton is about 2°° meters

Superstructure

I Superstructure

* |t would be inefficient to use 256bit numbers to

represent all coordinates
* The Locale class is used to represent a local

space within the Universe
* A Virtual Universe can contain one or more Locale

objects

* A Locale object
- Has a specific location in the VirtualUniverse with a

HiResCoord
- Uses normal floating point numbers within the Locale

I Superstructure

* A Java 3D Program has one VirtualUniverse
I - VirtualUniverse universe = new VirtualUniverse();

* A Locale object is attached to the

VirtualUniverse
- A VirtualUniverse can potentially have multiple
Locale objects

* Multiple ways of constructing Locales
- Locale locale = new Locale(universe);
e Default position in the universe of (0,0,0)
- Or you can specify where in the universe with the
constructors

 Locale(VirtualUniverse vu, HiResCoord location)
* Locale(VirtualUniverse vu, int[] x,int[] y,int[] z)

I The Locale Object

BranchGroup objects attached

* A BranchGroup is a Scene Graph

* Once a BranchGroup is attached to a Locale,
Java 3D begins rendering

* Can add a Scene Graph (BranchGroup
object) with:
- void addBranchGraph(BranchGroup branch)

I * A Locale object can have one or more

SimpleUniverse

that extends VirtualUniverse

I e SimpleUniverse is a highly useful utility class

* SimpleUniverse includes
- A Locale object
- Set of objects to define a standard view

e Can quickly form a complete Scene Graph by

add

Ing a content branch

e Default view position (from viewers perspective)

- T
- T
- T

ne x-axis points to the right
ne y-axis points up

ne viewer is on the z axis looking towards -z

Group Nodes

* BranchGroup

* OrderedGroup

* Primitive

* SharedGroup

* Switch

* TransformGroup

I BranchGroup

Locale

* No special operations beyond this

* Children can either be leafs or other Group
nodes

* Add children with
- void addChild(Node child)
- void insertChild(Node child, int index)
e Can also get the number of children, etc
- int numChildren()
- Enumeration getAllChildren()

I * The only type of Node that can be added to a

I OrderedGroup

of a node are visited during rendering
— Children of a node can be rendered in any order
* OrderedGroup
- Allows programmer to specify order that children
are rendered
- Rendered in order of indices

I * Java3D does not specify order that children

I Some other group nodes

- A geometric primitive such as a sphere
- We'll look at these later

* A SharedGroup

- Branch graphs must be trees

- If 2 branches are identical:
* \We can use a special type of node called a link which
s a leaf
e The Link nodes can each have a reference to a single
SharedGroup
* We'll see this in more detail later

I * Primitive node

I Some other group nodes
e Switch
I - Used to select a particular set of the children for
rendering

- We'll see these later on

* TransformGroup
- A geometric transform that is applied to all of its
children

Leaf <}

Leaf Nodes

[\

Alternate Appearance

Background

Behavior

BoundingLeaf

Clip

Fog

Light

— Link

— ModelClip

— Morph

— Shape3D

— Sound

— SoundScape

— ViewPlatform

NodeComponent <}

Node Components

/\

Alpha

Appearance

Aural Attributes

ColoringAttributes

DepthComponent

Geometry

Font3D

— ImageComponent —

RenderingAttributes

— LineAttributes —

TexCoordGeneration

— Material —

Texture

— MediaContainer —

TextureAttributes

— PointAttributes —

TextureUnitState

— PolygonAttributes —]

TransparencyAttributes

The Java 3D
“Hello” program

Scene Graph

SimpleUniverse

“" Canvas3D

ViewPlatform y

I

X

Physical
Body

Physical
Environment

Use SimpleUniverse

* Create a Canvas3D object
* Create a SimpleUniverse object
* Add content branch

I SimpleUniverse's View

- Projection: Perspective Projection
- Field of View: n/4

* Also passes through the origin by default
- Use:
su.getViewingPlatform().setNominalViewing Transform();
to move view back along the Z axis if some objects near
the origin

I * The View of SimpleUniverse

