
Java 3D's Scene Graphs

Basic elements of Graph Theory

Examples of where graphs are used in graphics

And then, Java 3D's Scene Graphs

The basics of Graph Theory

● Graph Theory:
– What it is...
– Some of its applications...
– Why we care about graphs in a course on

computer graphics
● Some computer graphics applications of

graph theory
● Java 3D's Scene Graphs

Graph Theory
● Graph Theory:

– Mathematical field which uses a structure called a graph
to study the interrelationship of entities

● Graph:
– A mathematical structure consisting of:

● Nodes (also known as vertices and sometimes points)
● Edges (sometimes less commonly called arcs or lines)

– A Graph is formally defined with the notation:
● G = (V, E)

– Where, V is a set of nodes (or vertices), e.g.,
● V = { a, b, c, d, e }

– And E is a set of edges where an edge is a pair of
vertices

● E = { (a,c), (b,e) (a,d), (e,a) }

Examples of Graphs
● Graphs can be visualized with circles or some

other shape for nodes or vertices and lines for
edges

● E.g.,
– V = { a, b, c, d, e }
– E = { (a,c), (b,e) (a,d), (e,a) }

A

B D

E

C

Directed Graphs
● A directed graph (or digraph) is a graph but

with directions on the edges
● E.g.,

– V = { a, b, c, d, e }
– E = { (a,c), (b,e), (a,d), (e,a) , (e,d) , (d,b)}

A

B D

E

C

Paths

● A Path in a graph is a sequence of nodes
that follow the edges of the graph

● Example path:
– A path from A to B

● A,D,B
A

B D

E

C

Cycles

● A cycle in a graph is a path that includes the
same node more than once

● Example of a cycle
– B,E,D,B

● Another example
– A,D,B,E,A A

B D

E

C

A Connected Graph

● Graphs can be connected or disconnected
● A graph is connected if for every pair of

nodes in the graph there exists a path if you
ignore directions on the edges

A

B D

E

C

A

B D

E

C

F

H

G

Connected Not Connected

Degree of a Node
● The degree of a node is the number of edges

connected to it
● The in-degree of a node in a digraph is the

number of edges that end at that node
● The out-degree of a node in a digraph is the

number of edges that begin at that node
– Degree(E) = 3
– InDegree(E) = 1
– OutDegree(E) = 2

A

B D

E

C

An Acyclic Graph

● A graph without cycles is called an acyclic
graph

A

B D

E

C

A DAG

● A DAG (directed acyclic graph) is a digraph
that contains no cycles

A

B D

E

C

Not a DAG

A

B D

E

C

A DAG

A Tree

● A Tree is:
– a DAG...
– that is connected...
– And for which no node has an in-degree greater

than 1

A

B D

E

C

Not a Tree

A

B D

E

C

A Tree

Leafs and Interior Nodes

● A leaf in a tree is a node whose outdegree is 0
● An Interior node is a node in a tree whose

outdegree is at least 1
– E.g., B and C are leafs
– A,D,and E are interior

A

B D

E

C

A Tree

A Forest

● A Forest is a:
– DAG...
– for which no node has an in-degree greater than 1...
– But is not necessarily connected

● Note any graph that is a tree is also a forest

A

B D

E

C

A Forest (but not a tree)

A

B D

E

C

A Tree (and also a forest)
F

H

G

Visualizing a Tree
● The root of a tree is the one (and only one node)

of the tree whose indegree is 0.
● The children of a node in a tree are the nodes at

the ends of the outgoing edges of the node
● Trees are usually visualized with the root at the

top, its children lined up below, and so forth

Visualizing a Tree

A

B D

E

C

This Tree

A

B

D

E

C

Would be visualized like:

What are Graphs Used For
● Representing a network

– Nodes: computers, routers, etc
– Edges: direct connections

● Cluster Computing
– Representing the interconnectedness of the nodes

(computers) of the cluster
● Social Network Analysis

– Nodes: people or other entities
– Edges: represent various types of relationships

● Software Engineering
– e.g., UML diagrams

● Chemistry:
– Representing molecular structures

Graphs in Computer Graphics
● Constructive Area Geometry: some

implementations use graphs to represent the
operations and primitive shapes, etc

U

-

Graphs in Solid Modeling
● Constructive Solid Geometry:

– The 3D equivalent of constructive area geometry
– Almost always implemented as a graph structure

Scene Graph: Legend

 Virtual Universe

Locale

Group Node

Leaf Node

Node Component

Other Object

Parent-Child Link

Reference

Scene Graph

Scene Graph: Classes

 SceneGraphObject

Node

NodeComponent

Group

Leaf

VirtualUniverse

Locale

SimpleUniverse

Superstructure

✦ VirtualUniverse – the universe
✦ HiResCoord – 256bit fixed point numbers
✦ Locale – a “smaller” space

Superstructure

VirtualUniverse – the universe
HiResCoord – 256bit fixed point numbers

•Why 256bit fixed point?
•Fixed point in the middle

•128 bits for integer part
•128 bits for the fractional part

•Allows for distances of up to 2127 meters if units are in meters
•Resolution can be as fine as 2-128 meters
•Can model anything in the universe

•E.g., distance from Earth to Sun is about 237 meters
•E.g., radius of a proton is about 2-50 meters

Superstructure
● It would be inefficient to use 256bit numbers to

represent all coordinates
● The Locale class is used to represent a local

space within the Universe
● A Virtual Universe can contain one or more Locale

objects
● A Locale object

– Has a specific location in the VirtualUniverse with a
HiResCoord

– Uses normal floating point numbers within the Locale

Superstructure
● A Java 3D Program has one VirtualUniverse

– VirtualUniverse universe = new VirtualUniverse();
● A Locale object is attached to the

VirtualUniverse
– A VirtualUniverse can potentially have multiple

Locale objects
● Multiple ways of constructing Locales

– Locale locale = new Locale(universe);
● Default position in the universe of (0,0,0)

– Or you can specify where in the universe with the
constructors

● Locale(VirtualUniverse vu, HiResCoord location)
● Locale(VirtualUniverse vu, int[] x,int[] y,int[] z)

The Locale Object

● A Locale object can have one or more
BranchGroup objects attached

● A BranchGroup is a Scene Graph
● Once a BranchGroup is attached to a Locale,

Java 3D begins rendering
● Can add a Scene Graph (BranchGroup

object) with:
– void addBranchGraph(BranchGroup branch)

SimpleUniverse

● SimpleUniverse is a highly useful utility class
that extends VirtualUniverse

● SimpleUniverse includes
– A Locale object
– Set of objects to define a standard view

● Can quickly form a complete Scene Graph by
adding a content branch

● Default view position (from viewers perspective)
– The x-axis points to the right
– The y-axis points up
– The viewer is on the z axis looking towards -z

Group Nodes

● BranchGroup
● OrderedGroup
● Primitive
● SharedGroup
● Switch
● TransformGroup

BranchGroup

● The only type of Node that can be added to a
Locale

● No special operations beyond this
● Children can either be leafs or other Group

nodes
● Add children with

– void addChild(Node child)
– void insertChild(Node child, int index)

● Can also get the number of children, etc
– int numChildren()
– Enumeration getAllChildren()

OrderedGroup

● Java3D does not specify order that children
of a node are visited during rendering
– Children of a node can be rendered in any order

● OrderedGroup
– Allows programmer to specify order that children

are rendered
– Rendered in order of indices
–

Some other group nodes

● Primitive node
– A geometric primitive such as a sphere
– We'll look at these later

● A SharedGroup
– Branch graphs must be trees
– If 2 branches are identical:

● We can use a special type of node called a link which
is a leaf

● The Link nodes can each have a reference to a single
SharedGroup

● We'll see this in more detail later

Some other group nodes

● Switch
– Used to select a particular set of the children for

rendering
– We'll see these later on

● TransformGroup
– A geometric transform that is applied to all of its

children

Leaf Nodes
 Leaf

AlternateAppearance

Background

Fog

Clip

BoundingLeaf

Behavior

Light

Link

ModelClip

SoundScape

Sound

Shape3D

Morph

ViewPlatform

Node Components

 NodeComponent

Alpha

Appearance

Geometry

DepthComponent

ColoringAttributes

AuralAttributes

ImageComponent

LineAttributes

PolygonAttributes

PointAttributes

MediaContainer

Material

RenderingAttributes

TexCoordGeneration

TransparencyAttributes

TextureUnitState

TextureAttributes

Texture

Font3D

Scene Graph
The Java 3D
“Hello” program

View Canvas3D

BG

TG

Physical
Body

Physical
Environment

ViewPlatform

BG

TG

Light

SimpleUniverse

Shape3D

Text3D Appearance

Material

Bounds

Use SimpleUniverse

● Create a Canvas3D object
● Create a SimpleUniverse object
● Add content branch

SimpleUniverse's View

● The View of SimpleUniverse
– Projection: Perspective Projection
– Field of View: π/4

● Also passes through the origin by default
– Use:

su.getViewingPlatform().setNominalViewingTransform();
to move view back along the Z axis if some objects near
the origin

