
Intro to 3D Graphics



3D Rendering Process

● In 2D graphics:
– Line between modeling and rendering often 

blurred
● e.g., We've largely been doing both within the 

paintComponent method
– Transformations in 2D graphics generally 

produce same result for object space transforms 
and device space transforms

– In 2D, the scene often constructed on the fly



3D Rendering Process
● In 3D Graphics, everything is significantly more 

complex
– Rendered image of 3D object different from original 

3D version
– Not feasible to go from rendered image to 3D model

● Can do this easily for 2D
● Computer Vision looks at this problem, but beyond scope of 

this course
● 3D Graphics Systems

– Usually necessary to maintain a persistent “retained” 
model of virtual world

– Modeling ans rendering engines separate from each 
other



3D Model and View
 

World Space 
Image 

Light 

Visual Object 

Viewer 

● Virtual world modeled separate from rendering 
engine
– Models objects, lighting, textures, camera location

● Rendering engine projects visible portions onto 
2D plane, rendering that image



Rendering Considerations

● Geometry of the graphics objects
● Location and position of the objects
● Geometric transformations applied to objects and views
● Material properties and texture of the objects
● Lights and their characteristics
● Type of projections in a view
● View position, field of view, and other properties
● Illumination and shading models
● Dynamic behaviors of various components
● Reactions to the user inputs 



Geometric Descriptions of 3D 
Objects

● Building blocks for 3D objects:
– Points, lines, surfaces, and solids
– More advances: spline curves, spline 

surfaces
● Complex objects usually 

approximated by meshes of polygons
– Similar to how in 2D we approximate 

curves with series of line segments
● 3D graphics systems (e.g., Java 3D)

– High-level geometries for 3D text, 
geometric primitives (e.g., spheres, 
cones, boxes)



Transformations

● Geometric transforms used to:
– Place objects in virtual world
– Changes size, shape, position, etc of the objects

● 3D Affine Transformations
– Commonly used to transform virtual world space

● Projective transforms
– For 3D viewing
– “Projecting” onto 2D plane



Properties of a Graphics Object

● More than just geometry effects rendering
● Graphics objects can have:

– Colors
– Textures
– Material properties

● Lighting, illumination, shading
– Light sources in model
– Policies to specify how lighting, illumination, and 

shading effect colors and light intensities during 
rendering



3D viewing

● Projective transformations map 3D scene 
onto 2D plane

● Needs to deal with hidden objects or portions 
of objects



Dynamic vs Static

● 3D rendering not limited to static scene
● Virtual world can change over time
●

● Interaction
– Altering scene based on user feedback
– e.g., games, virtual reality simulators, etc

●

● Animation
– Changes internal to virtual world
– e.g., model includes modeling behavior of 

objects (e.g., computer controlled character in a 
game)



Java 3D Overview

● Automatic rendering
● Modeling with a scene graph
● Object oriented

A Java 3D Hello 
program



Java 3D API

● API for 3D graphics
● Sits on top of either OpenGL or DirectX
● The Java 3D rendering engine

– Handles the rendering of the scene automatically
● Programming with Java 3D involves:

– Specifying the scene
– Modeling the objects
– Modeling properties such as light sources, 

textures, materials, etc
– Specifying projection rules, etc

● Java 3D rendering engine automatically 
handles the rendering of the image



Java 3D

● Java 3D is object oriented
– This is unlike most lower level graphics APIs such 

as OpenGL
● Java 3D uses something called a scene graph

– We will look at the basics of graph theory
– Organization of all objects necessary to render a 

scene
– Describes the entire virtual world
– Defines geometries, appearances, transforms, 

lights, views, etc
● Java 3D rendering engine continuously 

traverses this graph for rendering



Java 3D packages

● javax.media.j3d
– Main package of Java 3D

● javax.vecmath
– Classes for vectors, matrices, and other 3D 

related math objects
● Other useful, though not strictly Java 3D, 

packages
– com.sun.j3d.utils.universe
– com.sun.j3d.utils.geometry



Java 3D
● Textbook examples involving Java 3D use AWT 

components rather than Swing
● Why?

– Canvas3D used from Java 3D rendering is 
“heavyweight”

– If you place a heavyweight component in Swings 
JFrame, unexpected consequences can happen

● e.g., menus when opened from the menubar can appear 
underneath the object in the JFrame

● Have your classes extend Applet rather than 
Japplet 
– See Hello3D.java example
– Add the Applet to a MainFrame object



Java 3D rendering

● Canvas3D
– Canvas3D is subclass of AWT's Canvas
– Canvas3D is where the scene is rendered

● SimpleUniverse
– Basic framework for Java3D rendering
– Subclass of VirtualUniverse
– We will also be using VirtualUniverse
– Handles all of the rendering

● BranchGroup
– The scene graph is an object of this class
– It gets attached to the SimpleUniverse (or Virtual 

Universe)



A Few of Java 3Ds Features

● Example illustrates some of what is capable 
in Java 3D
– Can define 3D fonts with Font3D
– Can have 3D text objects
– Can derive shapes from 3D text
– Transform3D is used to define 3D 

transformations
– Light sources can be placed within the scene
– BoundingSpheres can be used to limit the region 

where the light influences



Java 3D

● Installed in the labs
● Java 3D includes

– 4 jar files (Java libraries)
● j3dcore.jar, j3dutils.jar, j3daudio.jar, vecmath.jar

– Native code
● For windows, it is 3 dynamic link libraries
● Similar type of thing for other platforms

● Java3D attempts to utilize hardware 
acceleration if available

● If you discover compatibility problems
– See list on page 141 of things to try


