
Bezier Curves, B-Splines, NURBS



Example Application: 
Font Design and Display

● Curved objects are 
everywhere

● There is always need for:
– mathematical fidelity
– high precision
– artistic freedom and 

flexibility
– physical realism



Example Application: 
Graphic Design and Arts



Example Application: 
Tool Path Generation and 

Motion Planning



Functional Representations

● Explicit Functions:
– representing one variable with another
– fine if     only one x value for each y value
– Problem: what if I have a sphere?

● Multiple values ….   (not used in graphics)
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Functional Representations

● Implicit Functions:
– curves/surfaces represented as “the zeros”
– good for rep. of n-1-D objects in n-D space
– Sphere example:
– What class of function?

● polynomial: linear combo of integer powers of x,y,z
● algebraic curves & surfaces: rep’d by implicit polynomial 

functions
● polynomial degree: total sum of powers,

i.e. polynomial of degree 6: 

02222 =−++ rzyx

02222 =−++ rzyx



● Parametric Functions:
– 2D/3D curve: two functions of one parameter

       (x(u), y(u))           (x(u), y(u), z(u))
– 3D surface: three functions of two parameters

          (x(u,v), y(u,v), z(u,v))
– Example: Sphere

Note: rep. not
algebraic, but is
parametric

Functional Representations



Functional Representations

● Which is best??
– It depends on the application
– Implicit is good for

● computing ray/surface intersection
● point inclusion (inside/outside test)
● mass & volume properties

– Parametric is good for
● subdivision, faceting for rendering
● Surface & area properties
● popular in graphics



Issues in Specifying/Designing 
Curves/Surfaces

● Note: the internal mathematical representation 
can be very complex
– high degree polynomials
– hard to see how parameters relate to shape

● How do we deal with this complexity?
– Use curve control points and either

● Interpolate
● Approximate



Points to Curves

● The Lagrangian interpolating polynomial
– n+1 points, the unique polynomial of degree n
– curve wiggles thru each control point
– Issue: not good if you want smooth or flat curves

● Approximation of control points
– points are weights that tug on the curve or surface



Parametric Curves

● General rep:

● Properties:
– individual functions are single-valued
– approximations are done with 

piecewise poly curves
– Each segment is given by three cubic 

polynomials (x,y,z) in parameter t
– Concise representation



Cubic Parametric Curves

● Balance between
– Complexity
– Control
– Wiggles
– Amount of computation
– Non-planar



Parametric Curves

● Cubic Polynomials 
that define a 
parametric curve 
segment

are of the form

● Notice we restrict the 
parameter
t to be



Parametric Curves

● If coefficients are 
represented as a matrix

and

then:



• Q(t) can be defined with four constraints
– Rewrite the coefficient matrix C as

where M is a 4x4 basis matrix, and G is a four-element constraint 
matrix (geometry matrix)

● Expanding                           gives:

   
   Q(t) is a weighted sum of the columns of the 

geometry matrix, each of which represents a point 
or vector in 3-space

Parametric Curves



Parametric Curves

● Multiplying out                      gives

(i.e. just weighted sums of the elements)
● The weights are cubic polynomials in t (called 

the blending functions, B=MT)
• M and G matrices vary by curve 

– Hermite, Bézier, spline, etc.



Warning, Warning, Warning: 
Pending Notation Abuse

● t and u are used interchangeably as a 
parameterization variable for functions

● Why?
– t historically is “time”, certain parametric functions can 

describe “change over time” (e.g. motion of a camera, 
physics models)

– u comes from the 3D world, i.e. where two variables 
describe a B-spline surface

● u and v are the variables for defining a surface
● Choice of t or u depends on the text/reference



Continuity

Two types:
● Geometric Continuity, Gi:

– endpoints meet
– tangent vectors’ directions are equal

● Parametric Continuity, Ci:
– endpoints meet
– tangent vectors’ directions are equal
– tangent vectors’ magnitudes are equal

● In general: C implies G but not vice versa



Parametric Continuity

● Continuity (recall from the calculus):
– Two curves are Ci continuous at a point p iff the 
i-th derivatives of the curves are equal at p



Continuity

● The derivative of         is the parametric tangent 
vector of the curve:



Continuity

● What are the conditions for C0 and C1 continuity at 
the joint of curves xl and xr?
– tangent vectors at end points equal
– end points equal

xl xr



Continuity

● In 3D, compute this for each component of the 
parametric function
– For the x component:

● Similar for the y and z components.

xl xr



Convex Hulls

● The smallest convex 
container of a set of 
points

● Both practically and 
theoretically useful in 
a number of 
applications 



Some Types of Curves

● Hermite
– def’d by two end points 

and two tangent 
vectors

● Bézier
– two end points plus 

two control points for 
the tangent vectors

● Splines
– Basis Splines
– def’d w/ 4 control points
– Uniform, nonrational 

B-splines 
– Nonuniform, nonrational B-

splines
– Nonuniform, rational 

B-splines (NURBS)



Bézier Curves

● Pierre Bézier @ 
Rénault ~1960

● Basic idea
– four points
– Start point P0

– End point P3

– Tangent at P0, P0 P1

– Tangent at P3, P3 P2



Bézier Curves

An Example:
● Geometry matrix is 

where Pi are control 
points for the curve

● Basis Matrix is

convex hull



Bézier Curves

● The general representation of a 
Bézier curve is 

where
GB - Bézier Geometry Matrix
MB - Bézier Basis Matrix

which is (multiplying out):

convex hull



Bernstein Polynomials
● The general form for the i-th Bernstein polynomial 

for a degree k Bézier curve is

● Some properties of BPs
– Invariant under transformations
– Form a partition of unity, i.e. summing to 1
– Low degree BPs can be written as high degree BPs
– BP derivatives are linear combo of BPs
– Form a basis for space of polynomials w/ deg≤k



General Bezier Curve
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Bernstein Polynomials

● For those that forget combinatorics
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Joining Bézier Segments: 
The Bernstein Polynomials

● Observe

The Four Bernstein polynomials
– also defined by

● These represent the blending proportions 
among the control points



Joining Bézier Segments: 
The Bernstein Polynomials

● The four cubic Bernstein 
polynomials

● Observe:
– at t=0, only BB1 is >0

● curve interpolates P1
– at t=1, only BB4 is >0

● curve interpolates P4



Joining Bézier Segments: 
The Bernstein Polynomials

● Cubic Bernstein 
blending functions 

● Observe: the 
coefficients are just 
rows in Pascal’s 
triangle



Properties of Bézier Curves

● Affine invariance
● Invariance under affine parameter 

transformations
● Convex hull property

– curve lies completely within original 
control polygon

● Endpoint interpolation
● Intuitive for design

– curve mimics the control polygon



Issues with Bézier Curves

● Creating complex curves may (with lots of 
wiggles) requires many control points
– potentially a very high-degree polynomial

● Bézier blending functions have global 
support over the whole curve
– move just one point, change whole curve

● Improved Idea: link (C1) lots of low degree 
(cubic) Bézier curves end-to-end



Bezier Curves, B-Splines, 
NURBS



Some Types of Curves

● Hermite
– def’d by two end points 

and two tangent 
vectors

● Bézier
– two end points plus 

two control points for 
the tangent vectors

● Splines
– Basis Splines
– def’d w/ 4 control points
– Uniform, nonrational 

B-splines 
– Nonuniform, nonrational B-

splines
– Nonuniform, rational 

B-splines (NURBS)



Bézier Curves

● Pierre Bézier @ 
Rénault ~1960

● Basic idea
– four points
– Start point P0

– End point P3

– Tangent at P0, P0 P1

– Tangent at P3, P3 P2



General Bezier Curve

∑
=

=
n

i
ini tBpts

0
, )()(

ini
in tt

i
n

tB −−




= )1()(,
Bernstein 
basis

The Quadratic and Cubic Curves of Java 2D 
are Bezier Curves with n=2 and n=3

The p
i
 are the control points



Joining Bézier Segments: 
The Bernstein Polynomials

● Cubic Bernstein 
blending functions 

● Observe: the 
coefficients are just 
rows in Pascal’s 
triangle



B-Spline Curve

∑
=

=
n

i
iki tNptp

0
, )()(

)()()(

otherwise,0
),[,1

)(

1,1
11

1
,1,

1
,0

tN
tt
tttN

tt
tttN

ttt
tN

ik
iki

ki
ik

iki

i
ik

ii
i

+−
+++

++
−

+

+

−
−+

−
−=



 ∈

=Normalized B-
spline blending 
functions 

n+1 control points and n+k+2 parameters known as knots

Defined only on [t
3
, t

n+k-2
)



B-Spline to Bezier Conversion
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B-splines: Basic Ideas

● Similar to Bézier curves
– Smooth blending function times control points

● But:
– Blending functions are non-zero over only a small 

part of the parameter range 
(giving us local support)

– When nonzero, they are the “concatenation” of 
smooth polynomials



B-spline Blending Functions
● is a step function that is 1 in the 

interval                 
● spans two intervals and is a 

piecewise linear function that goes 
from 0 to 1 (and back)

● spans three intervals and is a 
piecewise quadratic that grows from 0 
to 1/4, then up to 3/4 in the middle of 
the second interval, back to 1/4, and 
back to 0

● is a cubic that spans four intervals 
growing from 0 to 1/6 to 2/3, then 
back to 1/6 and to 0

B-spline blending functions
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B-spline Blending Functions:
Example for 2nd Order Splines

● Note: can’t define a 
polynomial with these 
properties (both 0 and non-
zero for ranges)

● Idea: subdivide the 
parameter space into 
intervals and build a 
piecewise polynomial 
– Each interval gets different 

polynomial function



B-spline Blending Functions:
Example for 3d Order Splines

● Observe:
– at t=0 and t=1 just 

three of the functions 
are non-zero

– all are >=0 and sum to 
1, hence the convex 
hull property holds for 
each curve segment of 
a 
B-spline

1994 Foley/VanDam/Finer/Huges/Phillips ICG



B-splines: Setting the Options
● Specified by

–  
– m+1 control points, P0 … Pm

– m-2 cubic polynomial curve segments, Q3…Qm

– m-1 knot points, t4 … tm+1

– segments Qi of the B-spline curve are 
● defined over a knot interval
● defined by 4 of the control points, Pi-3 … Pi

– segments Qi of the B-spline curve are blended together into 
smooth transitions via 
(the new & improved) blending functions

],[ 1+ii tt
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Example: Creating a B-spline 
Curve Segment
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B-splines: Knot Selection

● Instead of working with the parameter 
space            , use 

● The knot points
– joint points between

curve segments, Qi

– Each has a 
knot value

– m-1 knots for 
m+1 points

10 ≤≤ t max1210min ... tttttt m ≤≤≤≤≤ −

1994 Foley/VanDam/Finer/Huges/Phillips ICG



B-spline: Knot Sequences
● Even distribution of knots

– uniform B-splines
– Curve does not interpolate end points

● first blending function not equal to 1 at t=0
● Uneven distribution of knots

– non-uniform B-splines
– Allows us to tie down the endpoints by repeating knot values 

(in Cox-deBoor, 0/0=1)
– If a knot value is repeated, it increases the effect (weight) of the 

blending function at that point
– If knot is repeated d times, blending function converges to 1 and the 

curve interpolates the control point



Creating a Non-Uniform          
B-spline: Knot Selection

● Given curve of degree d=3, with m+1 control 
points              
– first, create m-1+2(d-1) knot points
– use knot values (0,0,0,1,2,…, m-2, m-1,m-1,m-1)

    (adding two extra 0’s and m-1’s)
– Note

● Causes Cox-deBoor to give
added weight in blending to the
first and last points when t is
near tmin and tmax

Pics/Math courtesy of G. Farin  @ ASU



Watching Effects 
of Knot Selection
● 8 knot points (initially)

– Note: knots are distributed 
parametrically based on t, 
hence why they “move”

● 10 control points
● Curves have as many 

segments as they have non-
zero intervals in u 

degree of 
curve



B-splines: Local Control Property

● Local Control
– polynomial coefficients 

depend on a few points 
– moving control point (P4) 

affects only local curve
– Why: Based on curve def’n, 

affected region extends at 
most 1 knot point away



Control: Bézier vs B-splines

Observe the 
effect on the 
whole curve 
when controls 
are moved



B-splines: Setting the Options

● How to space the knot points?
– Uniform

● equal spacing of knots along the curve
– Non-Uniform

● Which type of parametric function?
– Rational

● x(t), y(t), z(t) defined as ratio of cubic polynomials 
– Non-Rational


