
Bezier Curves, B-Splines, NURBS

Example Application:
Font Design and Display

● Curved objects are
everywhere

● There is always need for:
– mathematical fidelity
– high precision
– artistic freedom and

flexibility
– physical realism

Example Application:
Graphic Design and Arts

Example Application:
Tool Path Generation and

Motion Planning

Functional Representations

● Explicit Functions:
– representing one variable with another
– fine if only one x value for each y value
– Problem: what if I have a sphere?

● Multiple values …. (not used in graphics)

€

z = r 2 −x 2 −y 2

∃

Functional Representations

● Implicit Functions:
– curves/surfaces represented as “the zeros”
– good for rep. of n-1-D objects in n-D space
– Sphere example:
– What class of function?

● polynomial: linear combo of integer powers of x,y,z
● algebraic curves & surfaces: rep’d by implicit polynomial

functions
● polynomial degree: total sum of powers,

i.e. polynomial of degree 6:

02222 =−++ rzyx

02222 =−++ rzyx

● Parametric Functions:
– 2D/3D curve: two functions of one parameter

 (x(u), y(u)) (x(u), y(u), z(u))
– 3D surface: three functions of two parameters

 (x(u,v), y(u,v), z(u,v))
– Example: Sphere

Note: rep. not
algebraic, but is
parametric

Functional Representations

Functional Representations

● Which is best??
– It depends on the application
– Implicit is good for

● computing ray/surface intersection
● point inclusion (inside/outside test)
● mass & volume properties

– Parametric is good for
● subdivision, faceting for rendering
● Surface & area properties
● popular in graphics

Issues in Specifying/Designing
Curves/Surfaces

● Note: the internal mathematical representation
can be very complex
– high degree polynomials
– hard to see how parameters relate to shape

● How do we deal with this complexity?
– Use curve control points and either

● Interpolate
● Approximate

Points to Curves

● The Lagrangian interpolating polynomial
– n+1 points, the unique polynomial of degree n
– curve wiggles thru each control point
– Issue: not good if you want smooth or flat curves

● Approximation of control points
– points are weights that tug on the curve or surface

Parametric Curves

● General rep:

● Properties:
– individual functions are single-valued
– approximations are done with

piecewise poly curves
– Each segment is given by three cubic

polynomials (x,y,z) in parameter t
– Concise representation

Cubic Parametric Curves

● Balance between
– Complexity
– Control
– Wiggles
– Amount of computation
– Non-planar

Parametric Curves

● Cubic Polynomials
that define a
parametric curve
segment

are of the form

● Notice we restrict the
parameter
t to be

Parametric Curves

● If coefficients are
represented as a matrix

and

then:

• Q(t) can be defined with four constraints
– Rewrite the coefficient matrix C as

where M is a 4x4 basis matrix, and G is a four-element constraint
matrix (geometry matrix)

● Expanding gives:

 Q(t) is a weighted sum of the columns of the

geometry matrix, each of which represents a point
or vector in 3-space

Parametric Curves

Parametric Curves

● Multiplying out gives

(i.e. just weighted sums of the elements)
● The weights are cubic polynomials in t (called

the blending functions, B=MT)
• M and G matrices vary by curve

– Hermite, Bézier, spline, etc.

Warning, Warning, Warning:
Pending Notation Abuse

● t and u are used interchangeably as a
parameterization variable for functions

● Why?
– t historically is “time”, certain parametric functions can

describe “change over time” (e.g. motion of a camera,
physics models)

– u comes from the 3D world, i.e. where two variables
describe a B-spline surface

● u and v are the variables for defining a surface
● Choice of t or u depends on the text/reference

Continuity

Two types:
● Geometric Continuity, Gi:

– endpoints meet
– tangent vectors’ directions are equal

● Parametric Continuity, Ci:
– endpoints meet
– tangent vectors’ directions are equal
– tangent vectors’ magnitudes are equal

● In general: C implies G but not vice versa

Parametric Continuity

● Continuity (recall from the calculus):
– Two curves are Ci continuous at a point p iff the
i-th derivatives of the curves are equal at p

Continuity

● The derivative of is the parametric tangent
vector of the curve:

Continuity

● What are the conditions for C0 and C1 continuity at
the joint of curves xl and xr?
– tangent vectors at end points equal
– end points equal

xl xr

Continuity

● In 3D, compute this for each component of the
parametric function
– For the x component:

● Similar for the y and z components.

xl xr

Convex Hulls

● The smallest convex
container of a set of
points

● Both practically and
theoretically useful in
a number of
applications

Some Types of Curves

● Hermite
– def’d by two end points

and two tangent
vectors

● Bézier
– two end points plus

two control points for
the tangent vectors

● Splines
– Basis Splines
– def’d w/ 4 control points
– Uniform, nonrational

B-splines
– Nonuniform, nonrational B-

splines
– Nonuniform, rational

B-splines (NURBS)

Bézier Curves

● Pierre Bézier @
Rénault ~1960

● Basic idea
– four points
– Start point P0

– End point P3

– Tangent at P0, P0 P1

– Tangent at P3, P3 P2

Bézier Curves

An Example:
● Geometry matrix is

where Pi are control
points for the curve

● Basis Matrix is

convex hull

Bézier Curves

● The general representation of a
Bézier curve is

where
GB - Bézier Geometry Matrix
MB - Bézier Basis Matrix

which is (multiplying out):

convex hull

Bernstein Polynomials
● The general form for the i-th Bernstein polynomial

for a degree k Bézier curve is

● Some properties of BPs
– Invariant under transformations
– Form a partition of unity, i.e. summing to 1
– Low degree BPs can be written as high degree BPs
– BP derivatives are linear combo of BPs
– Form a basis for space of polynomials w/ deg≤k

General Bezier Curve

∑
=

=
n

i
ini tBpts

0
,)()(

ini
in tt

i
n

tB −−




=)1()(,
Bernstein
basis

The Quadratic and Cubic Curves of Java 2D
are Bezier Curves with n=2 and n=3

The p
i
 are the control points

Bernstein Polynomials

● For those that forget combinatorics

iik
ik uu

iki
kub −−

−
=)1(

)!(!
!)(

Joining Bézier Segments:
The Bernstein Polynomials

● Observe

The Four Bernstein polynomials
– also defined by

● These represent the blending proportions
among the control points

Joining Bézier Segments:
The Bernstein Polynomials

● The four cubic Bernstein
polynomials

● Observe:
– at t=0, only BB1 is >0

● curve interpolates P1
– at t=1, only BB4 is >0

● curve interpolates P4

Joining Bézier Segments:
The Bernstein Polynomials

● Cubic Bernstein
blending functions

● Observe: the
coefficients are just
rows in Pascal’s
triangle

Properties of Bézier Curves

● Affine invariance
● Invariance under affine parameter

transformations
● Convex hull property

– curve lies completely within original
control polygon

● Endpoint interpolation
● Intuitive for design

– curve mimics the control polygon

Issues with Bézier Curves

● Creating complex curves may (with lots of
wiggles) requires many control points
– potentially a very high-degree polynomial

● Bézier blending functions have global
support over the whole curve
– move just one point, change whole curve

● Improved Idea: link (C1) lots of low degree
(cubic) Bézier curves end-to-end

Bezier Curves, B-Splines,
NURBS

Some Types of Curves

● Hermite
– def’d by two end points

and two tangent
vectors

● Bézier
– two end points plus

two control points for
the tangent vectors

● Splines
– Basis Splines
– def’d w/ 4 control points
– Uniform, nonrational

B-splines
– Nonuniform, nonrational B-

splines
– Nonuniform, rational

B-splines (NURBS)

Bézier Curves

● Pierre Bézier @
Rénault ~1960

● Basic idea
– four points
– Start point P0

– End point P3

– Tangent at P0, P0 P1

– Tangent at P3, P3 P2

General Bezier Curve

∑
=

=
n

i
ini tBpts

0
,)()(

ini
in tt

i
n

tB −−




=)1()(,
Bernstein
basis

The Quadratic and Cubic Curves of Java 2D
are Bezier Curves with n=2 and n=3

The p
i
 are the control points

Joining Bézier Segments:
The Bernstein Polynomials

● Cubic Bernstein
blending functions

● Observe: the
coefficients are just
rows in Pascal’s
triangle

B-Spline Curve

∑
=

=
n

i
iki tNptp

0
,)()(

)()()(

otherwise,0
),[,1

)(

1,1
11

1
,1,

1
,0

tN
tt
tttN

tt
tttN

ttt
tN

ik
iki

ki
ik

iki

i
ik

ii
i

+−
+++

++
−

+

+

−
−+

−
−=



 ∈

=Normalized B-
spline blending
functions

n+1 control points and n+k+2 parameters known as knots

Defined only on [t
3
, t

n+k-2
)

B-Spline to Bezier Conversion

2/)(
3/)2(

3/)2(
2/)(

3/)2(
3/)2(

423

214

12

110

11

11

bbb
ppb
ppb
bbb
ppb
ppb

ii

ii

ii

ii

+=
+=

+=
+=
+=

+=

++

+

−

+

−−

If the knots are uniformly distributed

B-splines: Basic Ideas

● Similar to Bézier curves
– Smooth blending function times control points

● But:
– Blending functions are non-zero over only a small

part of the parameter range
(giving us local support)

– When nonzero, they are the “concatenation” of
smooth polynomials

B-spline Blending Functions
● is a step function that is 1 in the

interval
● spans two intervals and is a

piecewise linear function that goes
from 0 to 1 (and back)

● spans three intervals and is a
piecewise quadratic that grows from 0
to 1/4, then up to 3/4 in the middle of
the second interval, back to 1/4, and
back to 0

● is a cubic that spans four intervals
growing from 0 to 1/6 to 2/3, then
back to 1/6 and to 0

B-spline blending functions

)(0, tBk

€

B k ,1 (t)

)(2, tBk

)(3, tBk

B-spline Blending Functions:
Example for 2nd Order Splines

● Note: can’t define a
polynomial with these
properties (both 0 and non-
zero for ranges)

● Idea: subdivide the
parameter space into
intervals and build a
piecewise polynomial
– Each interval gets different

polynomial function

B-spline Blending Functions:
Example for 3d Order Splines

● Observe:
– at t=0 and t=1 just

three of the functions
are non-zero

– all are >=0 and sum to
1, hence the convex
hull property holds for
each curve segment of
a
B-spline

1994 Foley/VanDam/Finer/Huges/Phillips ICG

B-splines: Setting the Options
● Specified by

–
– m+1 control points, P0 … Pm

– m-2 cubic polynomial curve segments, Q3…Qm

– m-1 knot points, t4 … tm+1

– segments Qi of the B-spline curve are
● defined over a knot interval
● defined by 4 of the control points, Pi-3 … Pi

– segments Qi of the B-spline curve are blended together into
smooth transitions via
(the new & improved) blending functions

],[1+ii tt

3≥m

Example: Creating a B-spline
Curve Segment

ii tt 1−

Pi

Qi

B-splines: Knot Selection

● Instead of working with the parameter
space , use

● The knot points
– joint points between

curve segments, Qi

– Each has a
knot value

– m-1 knots for
m+1 points

10 ≤≤ t max1210min ... tttttt m ≤≤≤≤≤ −

1994 Foley/VanDam/Finer/Huges/Phillips ICG

B-spline: Knot Sequences
● Even distribution of knots

– uniform B-splines
– Curve does not interpolate end points

● first blending function not equal to 1 at t=0
● Uneven distribution of knots

– non-uniform B-splines
– Allows us to tie down the endpoints by repeating knot values

(in Cox-deBoor, 0/0=1)
– If a knot value is repeated, it increases the effect (weight) of the

blending function at that point
– If knot is repeated d times, blending function converges to 1 and the

curve interpolates the control point

Creating a Non-Uniform
B-spline: Knot Selection

● Given curve of degree d=3, with m+1 control
points
– first, create m-1+2(d-1) knot points
– use knot values (0,0,0,1,2,…, m-2, m-1,m-1,m-1)

 (adding two extra 0’s and m-1’s)
– Note

● Causes Cox-deBoor to give
added weight in blending to the
first and last points when t is
near tmin and tmax

Pics/Math courtesy of G. Farin @ ASU

Watching Effects
of Knot Selection
● 8 knot points (initially)

– Note: knots are distributed
parametrically based on t,
hence why they “move”

● 10 control points
● Curves have as many

segments as they have non-
zero intervals in u

degree of
curve

B-splines: Local Control Property

● Local Control
– polynomial coefficients

depend on a few points
– moving control point (P4)

affects only local curve
– Why: Based on curve def’n,

affected region extends at
most 1 knot point away

Control: Bézier vs B-splines

Observe the
effect on the
whole curve
when controls
are moved

B-splines: Setting the Options

● How to space the knot points?
– Uniform

● equal spacing of knots along the curve
– Non-Uniform

● Which type of parametric function?
– Rational

● x(t), y(t), z(t) defined as ratio of cubic polynomials
– Non-Rational

