Bezier Curves, B-Splines, NURBS

Example Application: Font Design and Display

- Curved objects are everywhere
- There is always need for:
 - mathematical fidelity
 - high precision
 - artistic freedom and flexibility
 - physical realism

Example Application: Graphic Design and Arts

Example Application: Tool Path Generation and Motion Planning

Explicit Functions:

- representing one variable with another
- fine if \exists only one x value for each y value
- Problem: what if I have a sphere?

$$z = \sqrt{r^2 - x^2 - y^2}$$

• Multiple values (not used in graphics)

• Implicit Functions:

- curves/surfaces represented as "the zeros"
- good for rep. of n-1-D objects in n-D space
- Sphere example:
- What class of function? $y^2 + z^2 r^2 = 0$
 - polynomial: linear combo of integer powers of x,y,z
 - algebraic curves & surfaces: rep'd by implicit polynomial functions
 - polynomial degree: total sum of powers, i.e. polynomial of degree 6:

$$x^2 + y^2 + z^2 - r^2 = 0$$

Parametric Functions:

- 2D/3D curve: two functions of one parameter (x(u), y(u)) (x(u), y(u), z(u))
- 3D surface: three functions of two parameters (x(u,v), y(u,v), z(u,v))
- Example: Sphere Note: rep. not algebraic, but is parametric
- $\begin{aligned} x(\theta,\phi) &= \cos\phi\cos\theta\\ y(\theta,\phi) &= \cos\phi\sin\theta\\ z(\theta,\phi) &= \sin\phi \end{aligned}$

- Which is best??
 - It depends on the application
 - Implicit is good for
 - computing ray/surface intersection
 - point inclusion (inside/outside test)
 - mass & volume properties
 - Parametric is good for
 - subdivision, faceting for rendering
 - Surface & area properties
 - popular in graphics

Issues in Specifying/Designing Curves/Surfaces

- Note: the internal mathematical representation can be very complex
 - high degree polynomials
 - hard to see how parameters relate to shape
- How do we deal with this complexity?
 - Use curve control points and either
 - Interpolate
 - Approximate

Points to Curves

- The Lagrangian interpolating polynomial
 - n+1 points, the unique polynomial of degree n
 - curve wiggles thru each control point
 - Issue: not good if you want smooth or flat curves
- Approximation of control points
 - points are *weights* that tug on the curve or surface

Cubic Parametric Curves

- Balance between
 - Complexity
 - Control
 - Wiggles
 - Amount of computation
 - Non-planar

 Cubic Polynomials that define a parametric curve segment

• Notice we restrict the parameter t to be $0 \le t \le 1$.

$$Q(t) = [x(t) \ y(t) \ z(t)]^T$$

$$\begin{aligned} x(t) &= a_x t^3 + b_x t^2 + c_x t + d_x, \\ y(t) &= a_y t^3 + b_y t^2 + c_y t + d_y, \\ z(t) &= a_z t^3 + b_z t^2 + c_z t + d_z, \\ 0 &\leq t \leq 1. \end{aligned}$$

 If coefficients are represented as a matrix

$$\mathbf{c} = \begin{bmatrix} a_x & b_x & c_x & d_x \\ a_y & b_y & c_y & d_y \\ a_z & b_z & c_z & d_z \end{bmatrix}$$

$$\mathbf{t} T = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix}^T$$
$$Q(t) = \begin{bmatrix} x(t) & t(t) & z(t) \end{bmatrix}^T = C \cdot T$$

- Q(t) can be defined with four constraints
 - Rewrite the coefficient matrix *C* as $C = G \cdot M$ where *M* is a 4x4 *basis matrix*, and *G* is a four-element constraint matrix (*geometry matrix*)
- Expanding $Q(t) = G \cdot M \cdot T$ gives:

$Q(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} G_1 & G_2 & G_3 & G_4 \end{bmatrix}$	$m_{11} \ m_{12} \ m_{13} \ m_{14}$	$m_{21} \ m_{22} \ m_{23} \ m_{24}$	$egin{array}{c} m_{31} \ m_{32} \ m_{33} \ m_{34} \end{array}$	$egin{array}{c} m_{41} \ m_{42} \ m_{43} \ m_{44} \end{array}$	$ \begin{array}{c c} t^3 \\ t^2 \\ t \\ 1 \end{array} $
---	-------------------------------------	-------------------------------------	--	--	---

Q(t) is a weighted sum of the columns of the geometry matrix, each of which represents a point or vector in 3-space

• Multiplying out $x(t) = G_x \cdot M \cdot \dot{T}$ ves

 $x(t) = (t^{3}m_{11} + t^{2}m_{21} + tm_{31} + m_{41})g_{1x} + (t^{3}m_{12} + t^{2}m_{22} + tm_{32} + m_{42})g_{2x}$ +(t^{3}m_{13} + t^{2}m_{23} + tm_{33} + m_{43})g_{3x} + (t^{3}m_{14} + t^{2}m_{24} + tm_{34} + m_{44})g_{4x} (I.C. JUST WEIGHTED SUMS OF THE ELEMENTS)

- The weights are cubic polynomials in *t* (called the *blending functions*, *B=MT*)
- *M* and *G* matrices vary by curve
 - Hermite, Bézier, spline, etc.

Warning, Warning, Warning: Pending Notation Abuse

- t and u are used interchangeably as a parameterization variable for functions
- Why?
 - *t* historically is "time", certain parametric functions can describe "change over time" (e.g. motion of a camera, physics models)
 - *u* comes from the 3D world, i.e. where two variables describe a B-spline surface
 - *u* and *v* are the variables for defining a surface
- Choice of *t* or *u* depends on the text/reference

Two types:

- Geometric Continuity, Gⁱ:
 - endpoints meet
 - tangent vectors' directions are equal
- Parametric Continuity, *C*^{*i*}:
 - endpoints meet
 - tangent vectors' directions are equal
 - tangent vectors' magnitudes are equal
- In general: *C* implies *G* but not vice versa

Parametric Continuity

• Continuity (recall from the calculus):

 Two curves are Cⁱ continuous at a point p iff the i-th derivatives of the curves are equal at p

• The derivative of Q(t) the parametric tangent vector of the curve:

$$\frac{d}{dt}Q(t) = Q'(t) = \begin{bmatrix} \frac{d}{dt}x(t) & \frac{d}{dt}y(t) & \frac{d}{dt}z(t) \end{bmatrix}^T = \frac{d}{dt}C \cdot T = C \cdot \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix}^T = \begin{bmatrix} 3a_xt^2 + 2b_xt + c_x & 3a_yt^2 + 2b_yt + c_y & 3a_zt^2 + 2b_zt + c_z \end{bmatrix}^T$$

- What are the conditions for C⁰ and C¹ continuity at the joint of curves x¹ and x^r?
 - tangent vectors at end points equal
 - end points equal

- In 3D, compute this for each component of the parametric function
 - For the x component:

• Since
$$x^{l}(1) = x^{r}(0) = P_{4_{x}}, \frac{d}{dt}x^{l}(1) = 3(P_{4_{x}} - P_{3_{x}}), \frac{d}{dt}x^{r}(0) = 3(P_{5_{x}} - P_{4_{x}})$$

Convex Hulls

- The smallest convex container of a set of points
- Both practically and theoretically useful in a number of applications

Some Types of Curves

- Hermite
 - def'd by two end points and two tangent vectors

Bézier

 two end points plus two control points for the tangent vectors

Splines

- <u>Basis Splines</u>
- def'd w/ 4 control points
- Uniform, nonrational B-splines
- Nonuniform, nonrational Bsplines
- Nonuniform, rational B-splines (NURBS)

Bézier Curves

- Pierre Bézier @ Rénault ~1960
- Basic idea
 - four points
 - Start point Po
 - End point **P**₃
 - Tangent at P_0 , P_0P_1
 - Tangent at P_3 , P_3P_2

Bézier Curves

An Example:

• Geometry matrix is

 $G_B = \begin{bmatrix} P_1 & P_2 & P_3 & P_4 \end{bmatrix}$ where P_i are control points for the curve

• Basis Matrix is

$$M_B = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Bézier Curves

 The general representation of a Bézier curve is

where $Q(t) = G_B \cdot M_B \cdot T$ G_B - Bézier Geometry Matrix M_B - Bézier Basis Matrix

which is (multiplying out):

$$Q(t) = (1-t)^{3}P_{1} + 3t(1-t)^{2}P_{2} + 3t^{2}(1-t)P_{3} + t^{3}P_{4}$$

Bernstein Polynomials

 The general form for the *i*-th Bernstein polynomial for a degree k Bézier curve is

$$b_{ik}(u) = \binom{k}{i} (1-u)^{k-i} u^i.$$

- Some properties of brs
 - Invariant under transformations
 - Form a partition of unity, i.e. summing to 1
 - Low degree BPs can be written as high degree BPs
 - BP derivatives are linear combo of BPs
 - Form a basis for space of polynomials w/ deg $\leq k$

General Bezier Curve

$$s(t) = \sum_{i=0}^{n} p_i B_{n,i}(t)$$

Bernstein basis

$$B_{n,i}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

The Quadratic and Cubic Curves of Java 2D are Bezier Curves with n=2 and n=3

The p_i are the control points

Bernstein Polynomials

For those that forget combinatorics

$$b_{ik}(u) = \frac{k!}{i!(k-i)!}(1-u)^{k-i}u^{i}$$

Joining Bézier Segments: The Bernstein Polynomials

Observe

$$Q(t) = (1-t)^{3}P_{1} + \frac{3t(1-t)^{2}P_{2}}{4} + \frac{3t^{2}(1-t)P_{3}}{4} + \frac{t^{3}P_{4}}{4}$$

The Four Bernstein polynomials

- also defined by

$$B_B = M_B \cdot T$$

 These represent the blending proportions among the control points

Joining Bézier Segments: The Bernstein Polynomials

- The four cubic *Bernstein* polynomials
 - $B_B = M_B \cdot T$ Observe:
 - at t=0, only *B_{B1}* is >0
 - curve interpolates P1
 - at t=1, only *B_{B4}* is >0
 - curve interpolates P4

Joining Bézier Segments: The Bernstein Polynomials

1

- Cubic Bernstein blending functions
- Observe: the coefficients are just rows in Pascal's triangle

$$b_{03}(u) = (1-u)^{3}$$

$$b_{13}(u) = 3u(1-u)^{2}$$

$$b_{23}(u) = 3u^{2}(1-u)$$

$$b_{33}(u) = u^{3}.$$

Properties of Bézier Curves

- Affine invariance
- Invariance under affine parameter transformations
- Convex hull property
 - curve lies completely within original control polygon
- Endpoint interpolation
- Intuitive for design
 - curve mimics the control polygon

Issues with Bézier Curves

- Creating complex curves may (with lots of wiggles) requires many control points

 potentially a very high-degree polynomial
- Bézier blending functions have global support over the whole curve
 - move just one point, change whole curve
- Improved Idea: link (C¹) lots of low degree (cubic) Bézier curves end-to-end

Bezier Curves, B-Splines, NURBS

Some Types of Curves

- Hermite
 - def'd by two end points and two tangent vectors

Bézier

 two end points plus two control points for the tangent vectors

Splines

- <u>Basis Splines</u>
- def'd w/ 4 control points
- Uniform, nonrational B-splines
- Nonuniform, nonrational Bsplines
- Nonuniform, rational B-splines (NURBS)

Bézier Curves

- Pierre Bézier @ Rénault ~1960
- Basic idea
 - four points
 - Start point Po
 - End point **P**₃
 - Tangent at P_0 , P_0P_1
 - Tangent at P_3 , P_3P_2

General Bezier Curve

$$s(t) = \sum_{i=0}^{n} p_i B_{n,i}(t)$$

Bernstein basis

$$B_{n,i}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

The Quadratic and Cubic Curves of Java 2D are Bezier Curves with n=2 and n=3

The p_i are the control points

Joining Bézier Segments: The Bernstein Polynomials

1

- Cubic Bernstein blending functions
- Observe: the coefficients are just rows in Pascal's triangle

$$b_{03}(u) = (1-u)^{3}$$

$$b_{13}(u) = 3u(1-u)^{2}$$

$$b_{23}(u) = 3u^{2}(1-u)$$

$$b_{33}(u) = u^{3}.$$

B-Spline Curve

$$p(t) = \sum_{i=0}^{n} p_i N_{k,i}(t)$$

Defined only on $[t_3, t_{n+k-2})$

Normalized Bspline blending functions

$$N_{0,i}(t) = \begin{cases} 1, & t \in [t_i, t_{i+1}) \\ 0, & \text{otherwise} \end{cases}$$
$$N_{k,i}(t) = \frac{t - t_i}{t_{i+k} - t_i} N_{k-1,i}(t) + \frac{t_{i+k+1} - t}{t_{i+k+1} - t_{i+1}} N_{k-1,i+1}(t)$$

n+1 control points and n+k+2 parameters known as knots

B-Spline to Bezier Conversion

If the knots are uniformly distributed

$$b_{-1} = (p_{i-1} + 2p_i)/3$$

$$b_1 = (2p_i + p_{i+1})/3$$

$$b_0 = (b_{-1} + b_1)/2$$

$$b_2 = (p_i + 2p_{i+1})/3$$

$$b_4 = (2p_{i+1} + p_{i+2})/3$$

$$b_3 = (b_2 + b_4)/2$$

B-splines: Basic Ideas

- Similar to Bézier curves
 - Smooth blending function times control points
- But:
 - Blending functions are non-zero over only a small part of the parameter range (giving us *local support*)
 - When nonzero, they are the "concatenation" of smooth polynomials

B-spline Blending Functions

B₀₀

B₀₁

B₀₂

B₀₃

B-spline blending functions

B-spline Blending Functions: Example for 2nd Order Splines

- Note: can't define a polynomial with these properties (both 0 and nonzero for ranges)
- Idea: subdivide the parameter space into intervals and build a piecewise polynomial
 - Each interval gets different polynomial function

B-spline Blending Functions: Example for 3^d Order Splines

- Observe:
 - at t=0 and t=1 just three of the functions are non-zero
 - all are >=0 and sum to
 1, hence the convex
 hull property holds for
 each curve segment of
 a
 B-spline

B-splines: Setting the Options

- Specified by
 - $m \ge 3$ - m+1 control points, $P_0 \dots P_m$
 - *m*-2 cubic polynomial curve segments, $Q_3 \dots Q_m$
 - *m*-1 *knot points*, $t_4 \dots t_{m+1}$
 - **segments** Q_i of the B-spline curve are
 - defined over a knot interval $[t_i, t_{i+1}]$
 - defined by 4 of the control points, $P_{i-3} \dots P_i$
 - segments Q_i of the B-spline curve are blended together into smooth transitions via (the new & improved) *blending functions*

Example: Creating a B-spline Curve Segment

B-splines: Knot Selection

• Instead of working with the parameter space $0 \le t \le 1$ use $t_{\min} \le t_0 \le t_1 \le t_2...$

The knot points

- joint points between curve segments, Q_i
- Each has a knot value
- *m*-1 knots for
 m+1 points

$$t_{\min} \le t_0 \le t_1 \le t_2 \dots \le t_{m-1} \le t_{\max}$$

B-spline: Knot Sequences

• Even distribution of knots

- uniform B-splines
- Curve does not interpolate end points
 - first blending function not equal to 1 at t=0
- Uneven distribution of knots
 - non-uniform B-splines
 - Allows us to tie down the endpoints by repeating knot values (in Cox-deBoor, 0/0=1)
 - If a knot value is repeated, it increases the effect (weight) of the blending function at that point
 - If knot is repeated *d* times, blending function converges to 1 and the curve interpolates the control point

Creating a Non-Uniform B-spline: Knot Selection

- Given curve of degree *d*=3, with *m*+1 control points points points
 - first, create *m*-1+2(*d*-1) knot points
 - use knot values (0,0,0,1,2,..., m-2, m-1,m-1,m-1)
 (adding two extra 0's and m-1's)
 - Note
 - Causes Cox-deBoor to give added weight in blending to the first and last points when *t* is near t_{min} and t_{max}

Watching Effects of Knot Selection

- 8 knot points (initially)
 - Note: knots are distributed parametrically based on *t*, hence why they "move"
- 10 control points
- Curves have as many segments as they have nonzero intervals in u

B-splines: Local Control Property

- Local Control
 - polynomial coefficients depend on a few points
 - moving control point (P₄) affects only local curve
 - Why: Based on curve def'n,
 - affected region extends at most 1 knot point away

X(t)

Control: Bézier vs B-splines

Observe the effect on the whole curve when controls are moved

B-splines: Setting the Options

- How to space the knot points?
 - Uniform
 - equal spacing of knots along the curve
 - Non-Uniform
- Which type of *parametric function*?
 - Rational
 - *x(t), y(t), z(t)* defined as ratio of cubic polynomials
 Non-Rational