I Bezier Curves, B-Splines, NURBS



Example Application:
Font Design and Display

e Curved objects are \ Ez [
everywhere “

* There is always need for:
- mathematical fidelity
— high precision
- artistic freedom and
flexibility
- physical realism




Example Application:
Graphic Design and Arts



Example Application:
Tool Path Generation and
Motion Planning




Functional Representations

* Explicit Functions:
- representing one variable with another
- fine if i only one x value for each y value
- Problem: what if | have a sphere?

7 :N/rz —y2 _yz

e Multiple values .... (not used in graphics)



Functional Representations

* Implicit Functions:
- curves/surfaces represented as “the zeros”
— good for rep. of n-7-D objects in n-D space

- Sphere example:

2 2 _
- What class of functl%n$ y tzi-r =0

* polynomial: linear combo of integer powers of x,y,z

e algebraic curves & surfaces: rep’d by implicit polynomial
functions

» polynomial degree: total sum of powers,
l.e. polynomial of degree 6:

x2+y2+22-r220



Functional Representations

 Parametric Functions:
- 2D/3D curve: two functions of one parameter
(x(u), y(u)) (x(u), y(u), z(u))
— 3D surface: three functions of two parameters

(x(u,v), y(u,v), z(u,v))
- Example: Sphere

Note: rep. not _

algebraig, but is x(0,0) cos ¢ cos O

parametric w(6,0) = cosdsin®
z2(0,0) = sing@



Functional Representations

* Which is best??

- It depends on the application

- Implicit is good for
e computing ray/surface intersection
e point inclusion (inside/outside test)
* mass & volume properties

- Parametric is good for
e subdivision, faceting for rendering

e Surface & area properties
* popular in graphics



Issues in Specifying/Designing
Curves/Surfaces

* Note: the internal mathematical representation
can be very complex

- high degree polynomials
- hard to see how parameters relate to shape
* How do we deal with this complexity?

— Use curve control points and either
* |[nterpolate
* Approximate



Points to Curves

* The Lagrangian interpolating polynomial
— n+1 points, the unique polynomial of degree n
— curve wiggles thru each control point
- Issue: not good if you want smooth or flat curves

* Approximation of control points
- points are weights that tug on the curve or surface

N et

Interpolation Approximation




I Parametric Curves

I e General rep:

z=2z(t), y =y(t), 2= 2(t) (\“'/X@
* Properties: ] | C—T—x(

> X
~ individual functions are single- _valued \ |
/
|
\

- approximations are done with
piecewise poly curves 1

- Each segment is given by three cubic
polynomials (X,y,z) in parameter t .

— Concise representation




Cubic Parametric Curves

* Balance between
- Complexity
— Control
- Wiggles
- Amount of computation
- Non-planar



Parametric Curves

Cubic Polynomials
that define a
parametric curve

* Notice we restrict the
segment

parameter
t to be

Q(t) = [z(t) y(t) z(1)] Osis 1.

arc ur UIc UM
2(t) = apt® + byt® + cpt + dy,
y(t) = ayt® + byt + ¢yt + d,
2(t) = at® + bt* + c,t + d.,
0<t<Il.



Parametric Curves

If coefficients are
represented as a matrix

i a, b, c, d,
C=|a b, cy d,
= | a b, c, d, |




Parametric Curves

O(t) can be defined with four constraints

- Rewrite the coefficient matrix C as C =
where M is a 4x4 basis matrix, and G IS a four-element constraint
matrix (geometry matrix)

* Expanding()(t) = G - M - TYIVes:

(D) ] [ mi1 mo1 mg1 ma | | ti |
4 — Nl ela a a. G mi2 M22 M32 M42 t
Q) ‘ZE t% [ b } mi13 M3 M33 M43 t
! i M4 Mao4 M34 Myyg 1
/(7)) 1S d welglitea sulll 01 uie COldInims ol e
geometry matrix, each of which represents a point

or vector in 3-space



Parametric Curves

I * Multiplying out x(s) = G,-M-TveS
x(t) = (Pmyy +1*may +tmay +ma1)g1x+ (Emin +t2may +tmzy +man)gox

+(l‘3mls + t2my3 + tmas +m43)g3x + (f3m14 + 1214 4tz + may 84x
(I.€. JUSL welgrniea sSulirtis Ol Uie eleltiernits

* The weights are cubic polynomials in ¢ (called
the blending functions, B=MT)

M and G matrices vary by curve
- Hermite, Bézier, spline, etc.



Warning, Warning, Warning:
Pending Notation Abuse

* tand u are used interchangeably as a
parameterization variable for functions

e Why?
— t historically is “time”, certain parametric functions can

describe “change over time” (e.g. motion of a camera,
physics models)

- u comes from the 3D world, i.e. where two variables
describe a B-spline surface
e uy and v are the variables for defining a surface

* Choice of t or u depends on the text/reference




I Continuity

Two types:
I * Geometric Continuity, G"
- endpoints meet
— tangent vectors’ directions are equal

e Parametric Continuity, C"
- endpoints meet
- tangent vectors’ directions are equal
- tangent vectors’ magnitudes are equal

* |n general: C implies G but not vice versa



Parametric Continuity

e Continuity (recall from the calculus):

- Two curves are (' continuous at a point p iff the
i-th derivatives of the curves are equal at p

slope

4 inuit curvature
discontinuity 1seon 1n1511 Y dlscontmulty
AT

Not continuous CO continuous C! continuous C2 continuous




Continuity

* The derivative of ()(¢) the parametric tangent
vector of the curve:

FQB=QW) = | F2() Fu®) §2() ]T - %C-T:C- 32 2t 10 ]T —




Continuity

* What are the conditions for C? and C' continuity at
the joint of curves x’ and x?

- tangent vectors at end points equal
- end points equal

d d
[ r [ r
1)=x"(0), —x'(1)=—x(0
PG SORF 0
/// : ///.__‘_-—“‘——-,PE5
7/ | / |
m
P1 xl P3|./ xV P7




Continuity

* |In 3D, compute this for each component of the
parametric function

- For the x component:

d d
'xl(l) :x”(()) — P4x7 Exl(l) — 3(P4x _P3x)7 E.xr(()) — 3(P5x _P4x)

e Si
1111 AlL ] Gl I\ J Al 1N\ & VVIIIrJVI INJIT 1 G\J s




Convex Hulls

* The smallest convex
container of a set of
points

* Both practically and
theoretically useful in
a number of
applications




Some Types of Curves

* Hermite * Splines
- def'd by two end points - Basis Splines
and two tangent - def'd w/ 4 control points
vectors — Uniform, nonrational
° Bézier B-splines
- two end points plus — Nonuniform, nonrational B-
two control points for splines
the tangent vectors — Nonuniform, rational

B-splines (NURBS)



Bézier Curves

* Pierre Bézier @
Rénault ~1960

* Basic idea
- four points

- Start point P,
- End point P,
- Tangentat P, P,P,
- Tangent at P,;, P,P,




I Bézier Curves
An Example: .PZ convex hull
I * Geometry matrix is K \\/
/ N
Gg=|P P, Py Py] ; AN
wrieiec r; die COIIL Ol h p
points for the curve P~ 7
. . e
* Basis Matrix is D
3
"1 3 -3 1°
3 -6 3 0
Me=1_3 3 0 o
1 0 0 0




Bézier Curves

* The general representation of a
Bézier curve is

p,  convex hull
where Q1) =Gp-Mp-T /’\/
G, - Bézier Geometry Matrix //
M, - Bézier Basis Matrix / (\
/ P]
: : o _ l T P
which is (multiplying out): p,*

O(t) = (1—1)°P +3t(1 —1)°Py +3t*(1 —t)P3 + > P4



Bernstein Polynomials

* The general form for the i-th Bernstein polynomial
for a degree k Bézier curve is

by (u) = : (1—u)"u'.

l

°* SoMic MIUpCIUGSD Uil DI D
- Invariant under transformations
- Form a partition of unity, i.e. summing to 1
- Low degree BPs can be written as high degree BPs
- BP derivatives are linear combo of BPs
- Form a basis for space of polynomials w/ deg<k



General Bezier Curve

50y B0

Bernstein B (1) E”Eti(l_ [y
basis i

The Quadratic and Cubic Curves of Java 2D
are Bezier Curves with n=2 and n=3

The p. are the control points



I Bernstein Polynomials

I * For those that forget combinatorics

k! k-
by (1) 3 ik - l)'(l u)'u’




Joining Bézier Segments:
The Bernstein Polynomials

* Observe
Q(t) = (1—1)°Py +3t(1 —1)°Py +3t*(1 —t)Ps + P4

The Four Bernstein polynomials
— also defined by
Bp=Mp-T

* These represent the blending proportions
among the control points



Joining Bézier

Segments:

The Bernstein Polynomials

The four cubic Bernstein
polynomials

Bp=Mp-T
serve.
- at t=0, only B, is >0
e curve interpolates P1
- att=1, only B;, is >0

* curve interpolates P4



Joining Bézier Segments:
The Bernstein Polynomials

e Cubic Bernstein
blending functions

* Observe: the
coefficients are just
rows in Pascal’s
triangle

b03(“
b5 (u

)

(1—u)’
3u(1 —u)*
3u* (1 —u)

0.



Properties of Bézier Curves

Affine invariance

Invariance under affine parameter
transformations

Convex hull property

— curve lies completely within original
control polygon

Endpoint interpolation

Intuitive for design
— curve mimics the control polygon

=
\C
\C\f




Issues with Bézier Curves

* Creating complex curves may (with lots of
wiggles) requires many control points

— potentially a very high-degree polynomial
* Bezier blending functions have global
support over the whole curve

- move just one point, change whole curve

* Improved Idea: link (C?) lots of low degree
(cubic) Bézier curves end-to-end



I Bezier Curves, B-Splines,
| NURBS



Some Types of Curves

* Hermite * Splines
- def'd by two end points - Basis Splines
and two tangent - def'd w/ 4 control points
vectors — Uniform, nonrational
° Bézier B-splines
- two end points plus — Nonuniform, nonrational B-
two control points for splines
the tangent vectors — Nonuniform, rational

B-splines (NURBS)



Bézier Curves

* Pierre Bézier @
Rénault ~1960

* Basic idea
- four points

- Start point P,
- End point P,
- Tangentat P, P,P,
- Tangent at P,;, P,P,




General Bezier Curve

50y B0

Bernstein B (1) E”Eti(l_ [y
basis i

The Quadratic and Cubic Curves of Java 2D
are Bezier Curves with n=2 and n=3

The p. are the control points



Joining Bézier Segments:
The Bernstein Polynomials

e Cubic Bernstein
blending functions

* Observe: the
coefficients are just
rows in Pascal’s
triangle

b03(“
b5 (u

)

(1—u)’
3u(1 —u)*
3u* (1 —u)

0.



B-Spline Curve

p(t) = z PN, (1) Defined onlyont,t )
i=0

N (n= 35 tU[7,8:1)
Normalized B- 0.(0) = HO, otherwise
spline blending o s

functions N, (t)= —N,_,;()+

Liw L Livie1 ™ iy

livgsr ~ L

Nk-l,i+1(t)

n+1 control points and n+k+2 parameters known as knots



B-Spline to Bezier Conversion

I If the knots are uniformly distributed

b= (pt2p)/3
b= 2p,t pi)/3
by = (., b))/

b, = (p;*+2p;1)/3
by=2pi,t pPus)/3
b= (by + b))



B-splines: Basic Ildeas

e Similar to Bézier curves
- Smooth blending function times control points

e But;

- Blending functions are non-zero over only a small
part of the parameter range
(giving us local support)

- When nonzero, they are the “concatenation” of
smooth polynomials



B-spline Blending Functions

By, (0)

By, (1)

By, (?)

B, (1)

is a step function that is 1 in the [uk’ uk+l )
interval \' l
spans two intervals and is a | |

piecewise linear function that goes
from O to 1 (and back)

spans three intervals and is a
piecewise quadratic that grows from 0
to 1/4, then up to 3/4 in the middle of

the second interval, back to 1/4, and
back to O

iS a cubic that spans four intervals
growing from 0 to 1/6 to 2/3, then
back to 1/6 and to O

B-spline blending fuhctions




B-spline Blending Functions:
Example for 2" Order Splines

* Note: can’t define a
polynomial with these
properties (both 0 and non-
zero for ranges)

* |dea: subdivide the

parameter space Iinto ﬁk ulk+1 ulk+2 ulk+3
intervals and build a A
piecewise polynomial Bo(u)

- Each interval gets different
polynomial function J\ B1(w)
L B 2([1)
/L Bs(u)




Dl Lwoldro koo

B-spline Blending Functions:
Example for 3¢ Order Splines

e Observe:

- at t=0 and t=1 just
three of the functions

| are non-Zero

Bg. Bg. - all are >=0 and sum to
1, hence the convex
hull property holds for
each curve segment of
a

B-spline

1994 Foley/VanDam/Finer/Huges/Phillips ICG



I B-splines: Setting the Options

I * Specified by

m2 3
- m+1 control points, P, ... P_

- m-2 cubic polynomial curve segments, Q,...Q_
- m-1 knot points, t, ... {_..

- segments Q. of the B-spline curve are
e defined over a knot interval  [£,,%;,,]
 defined by 4 of the control points, P, ... P,
- segments Q. of the B-spline curve are blended together into

smooth transitions via
(the new & improved) blending functions



Example: Creating a B-spline
I Curve Segment




B-splines: Knot Selection

* |nstead of working with the parameter
Space ¢ < quUse ¢ <t <t <t,...<t
* The knot points

— joint points between
curve segments, Q

— Each has a
knot value

- m-1 knots for
m+1 points

f P
¢ . 0 ® Knot
P P, ¢ Control point

» x(f)

1994 Foley/VanDam/Finer/Huges/Phillips ICG



I B-spline: Knot Sequences

— uniform B-splines
- Curve does not interpolate end points
* first blending function not equal to 1 at t=0
* Uneven distribution of knots
- non-uniform B-splines

- Allows us to tie down the endpoints by repeating knot values
(in Cox-deBoor, 0/0=1)

- If a knot value is repeated, it increases the effect (weight) of the
blending function at that point

- If knot is repeated d times, blending function converges to 1 and the
curve interpolates the control point

I e Even distribution of knots



Creating a Non-Uniform
B-spline: Knot Selection

* Given curve of degree d=3, with m+1 control
points Dos-- - P
- first, create m-1+2(d-1) knot points
- use knot values (0,0,0,1,2,..., m-2, m-1,m-1,m-1)
(adding two extra 0’'s and m-1's)
- Note

* Causes Cox-deBoor to give
added weight in blending to the
first and last points when t is
neart andf__ " d

Pics/Math courtesy of G. Farin @ ASU




I Watching Effects |-
I of Knot Selection

I * 8 knot points (initially) -3

0012345678

- Note: knots are distributed 000123456789
parametrically based on ¢,
hence why they “move”

e 10 control points "
000112233444
* Curves have as many
segments as they have non-
zero intervals in u
degreeOf Q000033335565655
curve

I H\




I B-splines: Local Control Property

* Local Control

pr, , FPlurve - polynomial coefficients
depend on a few points
P, Curve - moving control point (P,)
affects only local curve
P, Curve : ;
4 - Why: Based on curve def'n,

affected region extends at

P
p 8
P most 1 knot point away

Fs ® Knot
¢ Control point

» x(1)



Control Bézier vs B-splines

n=2

Observe the C}{TT\
effect on the
whole curve - @h\

@ when controls 000123456789

are moved
n=3
000112233444

n=5
L\ 00000333355555

.HL ig 000000000 ¢




I B-splines: Setting the Options

— Uniform
e equal spacing of knots along the curve

— Non-Uniform

* Which type of parametric function?

— Rational
* x(t), y(t), z(t) defined as ratio of cubic polynomials

— Non-Rational

I * How to space the knot points?



