CSIS 4244

Scripting
Languages

Intro to Ruby

Scripting Languages

Glue languages - to “glue” existing
programs together to build a larger system

« Combine a collection of existing components
General system administration tasks
Extension languages - like VB “macros” for
MS Office

Web scripting

Example Scripting

Languages
e Ruby « Javascript
* Perl « Groovy
» Tcl » Powershell
* Python « Visual Basic
* PHP » Mathematica/

Maple/MathLab

PLO7

Spring 2011

Scripting Languages
Modern scripting languages have two
principal sets of ancestors.

« Command interpreters or "shells" for
traditional batch and "terminal” (command-
line) processing

« IBM’s JCL, MS-DOS command interpreter, Unix sh

and csh

« Tools for text processing and report
generation

* IBM’s RPG, and Unix’s sed and awk.

Common Characteristics

Batch and interactive - Perl does just-in-time
compilation. Most others either compile or
interpret input line-by-line
Minimum syntax overhead - Compare Ruby to
Java, etc. for:

print "Hello world.\n"
Lack of declarations and dynamic typing
Easy access to other programs and the OS

Built in pattern matching and string
manipulation

Ruby

Designed in Japan by Yukihiro Matsumoto
(a.k.a, “Matz”)
Began as a replacement for Perl and Python
A pure object-oriented scripting language

« All data are objects
Most operators are implemented as
methods, which can be redefined by user
code
Purely interpreted

« Can be used interactively (irb)

CSIS 4244 Spring 2011

Variables and Expressions Constants and Variables
Nothing unusual, except variables are not Names begin with a capital letter
declared Quarter = 0.25

They’re not really constant, but changing them
X =3+ 2%¥(5 - 1) may give a warning
X = 4*%*3
x o= U Tyttt Variable names begin with a lower case
x = X < 'abc! letter
x = 10
Comments Everything is an object

Extends to the end of the line All arithmetic, relational, and

_begin assignment operators are implemented

This i Lo as methods
is is a multi-line comment
It has 2 lines Numeric types are classes with methods

=end
4.times { puts "Repeat that..."}
"Repeat that..." * 5

Conditionals Conditionals
temp = 7@ temp = 95

if temp >= 90

puts "Wow, its HOT!"
elsif temp >= 70

puts "This is nice"
elsif temp >= 50

puts "A little cool™
else

puts "Brrrrrrr!"

end

puts "Wow, its HOT!" if temp >= 90

temp -= 60
puts "Brrrrrrr" unless temp >= 50

temp += 40
puts "This is nice" if (70..90) === temp

PLO7 0.

CSIS 4244

Arrays

An array is a one-dimensional vector that
holds zero or more values
fib = [1, 1, 2, 3, 5, 8]
mixed = ["cool", -4, 3.14, "hot"]
empty = []
five = fib[4]
pi = mixed[-2]
Two methods for the length of an array
lenl = fib.length
len2 = mixed.size

Array operations

Shift and unshift to remove/add an
element at the front of an array

Insert, delete, and replace anywhere in
an array

x = list.shift

list.unshift 1234

list.insert(2, 'abc')

list.delete_at 3

list[2] = 'xyz'

Array operations

There are many other interesting array
methods, including
clear, delete, empty?, first,
include?, index, last, reverse,
reverse!, sort, sort!, uniq,
values_at, +, -, &, |

PLO7

Spring 2011

Array operations

Push and Pop add/remove an element at
the end of an array

list = ["first"]
list.push("second")

list << "third"

list.push "fourth"
list[list.length] = 'fifth'
list.pop

Now 1list contains:
["first", "second", "third", "fourth"]

Array operations

Building an array by splitting
b = "this is an array”.split(" ")
Build a string by joining
s = b.join
Add an element at the beginning of the array
b.unshift s

Array iteration

Ways to iterate through an array

i=290

while i != list.length
puts list[i]
i=1i+1

end

list.each do
|item| puts item
end

for item in list
puts item
end

CSIS 4244

Array Slicing

List of 26 characters in array b
b= ('A".."Z").to_a

Slice an array
c = b[13..b.length]

c[2..10].each {|item| print item + "
d = b.values_at(1,2,5,8..15,20)

"}

Hashes

h = {} # makes an empty hash
h['simpson'] = 'bart’
h["bunny"] = "bugs";
h[2.3] = 8.9;
h.keys.each {|key| puts key }
h[2.3] += 2
h.values.each do
|val| puts val
end
h.each {|k, v| puts "#{k} : #{v}"}

Methods

def weather(temp)
if temp >= 90
puts "Wow, its HOT!"
elsif temp >= 70
puts "This is nice"
elsif temp >= 50
puts "A little cool”
else
puts "Brrrrrrr"
end
end

weather(75)

PLO7

Spring 2011

Hashes

A hash stores a mapping of (key, value) pairs
Ruby provides hashes to quickly look up the
value given the key when there are many
(key, value) pairs.

Similar to hash tables

Accessed similar to arrays, but uses keys as
subscripts

Hashes

states = {"NJ" => "new jersey",
"PA" => "pennsylvania"}
st = "NY"
if states[st]
puts st + "
else

is abbrev for " + states[st]

puts "No known state for " + st
end

