CSIS 4244

Chapter 2

Scanning and Parsing

Syntax Analysis - Part 2

Parser

Large scale language constructs
* Expressions, statements, program units, etc.

¢ A push-down automaton based on a context-free
grammar, or BNF

Implementing a Scanner

Letter/Digit

{ \
™ Letter \7/6‘/
W/

State diagram for
names, reserved words,
and integer literals

[ Start } return lookup (token)

\_/ addChar; getChar
{

AN Digit 7N

{( int ) j——— return Int_Lit
addChar; getChar _\\___/, -

{ \
Languages — R. Sebesta 62008 —

Concepts of Programming
addChar; getChar

(There are other
techniques and automated
tools to do this)

Design a state-transition diagram that describes the
tokens and write a subprogram to implement it

PLOS

Spring 2011

Syntax Analysis - Part 1

Scanner
Low-level, small scale language constructs

« Uses pattern matching to group input characters into
tokens

* Removes comments
« Saves text of identifiers, numbers, strings

« Tags source locations (file, line, column) for error
messages

« A finite automaton based on regular expressions

The scanner is usually a function that is called by the
parser when it needs the next token

Scanning

Front-End to parser
¢ Pattern matcher

) Token Category
Char strings — Tokens
sum ID
= ASSIGN_OP
Example: oldsum ID
sum = oldsum + val/100; + ADD_OP
val ID
/ DIV_OP
100 INT_CONST
; SEMICOLON
Implementation:
int scan() {
getChar();
switch (charClass) {
case LETTER:
addChar();
getChar();
while (charClass == LETTER || charClass == DIGIT) {
addChar();
getChar();

return lookup(token);
break;

Concepts of Programming
Languages - R. Sebesta ©2008




CSIS 4244

Scanning

case DIGIT:

addChar();

getChar();

while (charClass == DIGIT) {
addChar();
getChar();

}

return INT_LIT;

break;

Concepts of Programming
Languages — R. Sebesta €2008

Spring 2011
Parsing
Goals
¢ Find syntax errors, produce messages and
continue

* Build Parse Tree
* Top-Down: From the root to the leaves
(left-most derivation)
 Bottom-Up: From the leaves to the root
(Reverse of right-most derivation)

Top - Down Parsers

Does a leftmost derivation
Uses preorder traversal of parse tree
Using one-token look ahead must decide which
replacement rule to use
« Can’t have left-recursive rules

* Rule alternatives must have unique leftmost
terminal

Algorithms:
» Recursive Descent Parser using the BNF description

* LL (Left-to-right scan, Leftmost derivation)
(table-driven solutlon)

Recursive-Descent Parsing

» There is a subprogram for each
nonterminal in the grammar

» EBNF is ideally suited for being the
basis for a recursive-descent parser,
because EBNF minimizes the number
of nonterminals

Recursive-Descent Parsing

/* Parses strings generated by the_rule:
<expr> > <term> {(+ | -) <term>} */
v01d expr() {
g // Parse the first term
/* As long as the next token is + or -, call scan to
get the next token, and parse the next term */
while (nextToken == ADD_OP ||
nextToken == SUBTRACT_CODE){
scan();
term();

}

Convention: Every parsing routine leaves the next token in
nextToken

Concepts of Programming
Languages - R. Sebesta ©2008

PLOS

Bottom - Up Parsers

Produces the reverse of a rightmost derivation,
thus avoiding the Left Recursion Problem
¢ LR Grammars

(Left-to-right, Rightmost Derivation)




CSIS 4244

Advantages of LR Parsers

1. Majority of current programming languages have a
grammar that can use LR Parsers

2. More efficient (now) and more grammars than other
bottom-up parsers

3. Quickly detect syntax errors
Grammars that can be compiled by an LR Parser is a
superset of LL Parsers

PLOS

Spring 2011



