
CSIS 4244 Spring 2011

- 1 -PL04

Chapter 2
(continued)

More metalanguages
Grammar categories

Extended BNF (EBNF)
Extensions

[] used to enclose optional syntax
{ } used to enclose syntax that can be repeated

zero or more times (like Kleene star)

EBNF
Examples

<Real_Number>  [+ | -] <Unsigned_Real>
<Unsigned_Real>  <Integer> [. <Integer>]
<Integer>  <Digit> {<Digit>}
<Expr> → <Term> { (+ | -) <Term> }

C-style EBNF

C-style EBNF lists alternatives on separate
lines and uses opt to signify optional parts.

IfStatement:
if (Expression) Statement ElsePartopt

ElsePart:
else Statement

Syntax Graphs
A graphic method for representing EBNF
grammar rules
Uses directed graphs with nodes that are
terminals (ellipses) and nonterminals
(rectangles)

Syntax Graphs

CSIS 4244 Spring 2011

- 2 -PL04

Ada if statement
(syntax graph and EBNF) The Chomsky Hierarchy

Each class of grammar is differentiated by
the set of productions that are permitted

Type 3: Regular Grammars
Type 2: Context-Free Grammars
Type 1: Context-Sensitive Grammars
Type 0: Unrestricted Grammars

Regular Grammars

Sentences can be recognized by Finite
State Automata
Have no memory, actions are determined
by the current state and next input
Production rules have the form

<A>  a
<A>  a

Finite State Automata
(FSA)

State

Final State

Transition

FSA

An FSA for the binary number grammar:

S A

0

1

0

1

Regular Expressions
Can be used to represent regular grammars, rather
than production rules
Used by Unix utilities for string search & replace
operations (grep, awk, vi, sed)
Also part of Perl and Ruby
Supported in Java and C# libraries

CSIS 4244 Spring 2011

- 3 -PL04

Regular Expressions
Pattern: Matches:

ring Diamond ring, string, stringent

. Matches any single character

Pattern: Matches:
.ing sling, ping

Regular Expressions
[] – Defines a class of characters that matches
any single character in the brackets

Pattern: Matches:
[bB]ill billion, Bill Gates
Num [1-6] Num 2, Num 49

Pattern: Matches:
a.bc axbc, aabc, !a5bczz
t[aeiou].k talking, storks, teak

Regular Expressions

^ - Complement of a character class in []
(Note: ^ also has another meaning in regexp's)

Pattern: Matches:
[^a-zA-Z] 7, }, stop!

Regular Expressions
* Matches zero or more occurrences of the
preceding item

Pattern: Matches:
ab*c ac, abc, abbc, abbbc
ab.*c abc, abxc, abxyz123c
.* 9, (@$%!), qwerty2#

+ Matches one or more occurrences
? Matches zero or one occurrence

Context-Free Grammars
Allows the definition of nested syntactic units
Sentences recognized by push-down automata
Productions have the form

<A>  B
where B consists of zero or more terminals
and/or non-terminals
BNF expresses context-free grammar rules
Most programming language constructs can be
defined using context-free grammar rules

Context-Sensitive
Grammars

Recognized by linear-bounded automata
Productions have the form

A  B
where A and B are strings of terminals and non-
terminals, and length of B  length of A

CSIS 4244 Spring 2011

- 4 -PL04

Context-Sensitive
Grammars

Example:
w<X>y  wzy

(can only replace <X> by z in the context
w<X>y)
Example:

In a procedure call, the number of actual
parameters must match the number of formal
parameters

Unrestricted Grammars

Recognized by Turing machines
No restrictions on productions

