
CSIS 4244 Spring 2011

- 1 -PL03

Chapter 2
Syntax and Grammars

Defining a Language
Syntax

The rules which govern the form or structure 
of expressions, statements, and program 
units

Semantics
The meaning of the expressions, statements, 
and program units

Language Terminology

Alphabet
A finite set of symbols from which sentences 
are constructed

Sentence
A string of symbols over some alphabet

Language
A set of properly formed sentences

Metalanguage
A language for defining languages

Often used to define the syntax of sentences in a 
programming language

Common metalanguages
• Automata
• Regular expressions
• Backus-Naur Form (BNF and EBNF)
• Syntax diagrams

Grammar
A finite collection of rules that defines the set 
of all sentences in a language
Noam Chomsky’s definition (1950s) of formal 
grammar:

1. An alphabet (elements are called terminals)
2. A set of nonterminals (like variables that can 

represent a class of constructs)
3. A start symbol (the initial nonterminal)
4. A set of productions (the rules which define the 

syntax)

An Example Grammar
Alphabet:  { 0, 1 }
Nonterminals:  { <S> }
Initial nonterminal: <S>

Productions:
{ <S>  1

<S>  0
<S>  1 <S>
<S>  0 <S> }

The  symbol means "is 
defined as" or "is replaced by".



CSIS 4244 Spring 2011

- 2 -PL03

Derivations
Production rules can be used to derive 
sentences in a language

1. Start with the initial nonterminal
2. Replace it with the RHS of a production
3. Continue replacing nonterminals until only 

terminals remain

Leftmost derivations – Always replace the leftmost nonterminal

Sentence Derivations
Leftmost derivation the following:

1011

01001

R1: <S>  1
R2: <S>  0
R3: <S>  1 <S>
R4: <S>  0 <S>

Describe the language generated by this grammar.

Getting Formal: 
Regular Expressions

A regular expression is one of the following:
• A character
• The empty string (denoted by 
• Two regular expressions concatenated
• Two regular expressions separated by | (or)
• A regular expression followed by the Kleene

star (concatenation of zero or more strings)

Regular Expression Example

Numeric constants:

number    integer | real
integer    digit  digit*
real    integer exponent | decimal ( exponent |  )*
decimal    digit*  ( . digit  |  digit . ) digit*
exponent    ( e | E ) ( + | - |  ) integer
digit    0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Context-Free Grammars
All productions are of the form A→  where
A is a nonterminal symbol and  is a string 
of terminals and non-terminals

Backus-Naur Form (BNF)
A metalanguage for context-free grammar 
rules

BNF Examples

Example 1

<max_3_digit_number>  <digit>
| <digit> <digit>
| <digit> <digit> <digit>

<digit>  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9



CSIS 4244 Spring 2011

- 3 -PL03

BNF Examples
Example 2

<instr_sequence>   |  <instr> ; <instr_sequence>

<instr>  while (<cond>) <instr>

|  if (<cond>) <instr>

|  {<instr_sequence> }

|   more instructions…

<cond>   defined elsewhere…

BNF Examples
Example 3

<unsigned_real>   <integer>.<integer>

<integer>    <digit>  |  <integer><digit>

<digit>        0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Derive the sentence:   0.825

Parse Tree
A hierarchical representation of a 
derivation (aka derivation tree)

• Each leaf node is a terminal 
• Each internal node is a nonterminal
• Each internal node is the LHS of a production and its 

children (in left-to-right order) form the RHS of that 
production

• The root is the starting non-terminal

<unsigned_real>

<integer> .

<integer>

<integer>

<digit>

0

<digit>

<integer> <digit>

<digit>

8

2

5

Parse Tree for 0.825

Ambiguous Grammar
Has at least one sentence with more than 
one distinct parse tree
Example: The Pascal (and C) "if" statement

<if_stmt>  if <cond> then <stmt>
| if <cond> then

<stmt>
else

<stmt>
<stmt>  <if_stmt> | . . .

Arithmetic Expressions
Version 1

expr  id | number | - expr |  ( expr )

| expr op expr

op  + | - | * | /



CSIS 4244 Spring 2011

- 4 -PL03

Arithmetic Expressions
Version 2


