CSIS 4244

Chapter 12

More Erlang

The Scheduler

Allocating execution time among processes:

Every command is assigned a number of
reduction steps

This value is reduced for every operation
executed

If a process's reduction count reaches zero, it
is preempted

receive after

Allows a process to continue after a given
delay even if no messages are received

PL29

Spring 2011

Recursion

Erlang optimizes all recursion so tail recursion doesn't
necessarily improve efficiency

Factorial with guard

f(N) when N > @ -> N * £(N - 1);
f(0) -> 1.

receive

Similar to a case statement, but the
process is suspended in a receive
statement until a message is matched

At any given time, most processes will be
suspended in receive statements waiting
for events to trigger actions

Concurrency-Oriented
Programming
Create a process for every truly concurrent

activity in a system
* Not for every task




CSIS 4244

Case Study - IM Proxy

» System receives a packet through a socket
» Decodes it

» Takes actions based on its content

» Encodes a reply packet

» Sends reply to a different socket

Good Design - A process for
each concurrent activity

Client/Server Example

Server manages radio frequencies for cell
phones connected to the network

Phone requests a frequency when a call
needs to be connected and releases it when
call is terminated

Server Clients

{0k, frequency} g

{deallocate, frequency}

allocate

ok

PL29

Spring 2011

Poor Design - A process for
every task

Error
handler
@

Client/server Models

Clients

k:jjjjj:/’////‘llli’
reply ‘

Server Functions

%% The start function creates and initializes
%% the server.

start() ->
register(frequency, spawn(frequency, init, [])).
init() -»>
Frequencies = {get_frequencies(), []},
loop(Frequencies).

%% Sample frequencies
get_frequencies() -> [10,11,12,13,14,15].




CSIS 4244

Client Functions

stop() -> call(stop).
allocate() -> call(allocate).
deallocate(Freq) -> call({deallocate, Freq}).

%% Functional interface to message passing
call(Message) ->
frequency ! {request, self(), Message},
receive
{reply, Reply} -> Reply
end.

Erlang Term Storage (ETS)

Used for collections of items with efficient storage
and retrieval
ETS tables store tuples with access using a key field

Set: No duplicates

Ordered set: Can be traversed in lexicographical
order based on keys

Bag: Allows duplicate entries for the same key
Duplicate bag: Allows duplicate elements (key &
value)

All use hash table implementation except Ordered
set which uses AVL balanced binary tree

PL29

Spring 2011

Main Receive-Evaluate Loop

loop(Frequencies) ->
receive

{request, Pid, allocate} ->
{NewFrequencies, Reply} = allocate(Frequencies, Pid),
reply(Pid, Reply),
loop(NewFrequencies);

{request, Pid , {deallocate, Freq}} ->
NewFrequencies = deallocate(Frequencies, Freq),
reply(Pid, ok),
loop(NewFrequencies);

{request, Pid, stop} ->
reply(Pid, ok)

end.
reply(Pid, Reply) ->
Pid ! {reply, Reply}.

Credits

Erlang Programming, by Francesco Cesarini and
Simon Thompson




