CSIS 4244

Spring 2011

Chapter 12

Concurrency in Ruby
Intro to Erlang

Concurrency in Ruby

Ruby has both threads and processes

Ruby threads are operating system
independent

The Thread class provides support for creating
and using threads

Other related classes include Monitor, Sync,
Mutex, Queue

Mutex - Semaphore

class Counterl
attr_reader :count
def initialize

@count = @

@mutex = Mutex.new
end
def inc

@mutex.lock

@count += 1
@mutex.unlock
end

c = Counterl.new
t1l = Thread.new {1000.times { c.inc } }
t2 = Thread.new {1000.times { c.inc } }

tl.join; t2.join
puts c.count
end

Monitors for Mutual Exclusion

require 'monitor’'
class Counter2 < Monitor
attr_reader :count

def initialize
@count = @
super

end

def inc
synchronize do
@count += 1
end
end
end

c = Counter2.new

t1 = Thread.new {1000.times { c.inc } }
t2 = Thread.new {1000.times { c.inc } }
t1.join; t2.join

puts c.count

Monitors and Condition Variables

@nusic = Mutex
@violin = Condi ariable.new

@violins_free =

chronize do
@violin.wait(@music) if @violins_free == @
@violins_free -= 1

puts "#{n} has a violin

end
s playing..." Modified example from
s finished..." The Ruby Way, by Hal Fulton

@music.synchronize do
@violins_free += 1
@violin.signal if @violins_free == 1

=0
|i] threads << Thread.new {musician(i+1)}}

PL27

Intro to Erlang

A functional language

Developed for real-time fault-tolerant distributed
telecom applications

Concurrency uses very lightweight processes (not
threads that use shared resources)

CSIS 4244

Spring 2011

Atoms, Lists, Tuples

abc <« An atom

[1, 2, 3] « Alist

{one, 1, two, 2} <« Atuple

Name = "Erlang". <« Avariable (immutable)

Pattern Matching

= is really a pattern matching operator

Pattern = Expression

Evaluate the Expression and match the result
against the Pattern

{Y,M,D} = date().
< Variables get bound to year,
month, and day

Pattern Matching

-module(matching).

-export([number/1]).

number(1) -> one; Compile:

number‘(2) -> tWO; c(matching.erl).

number(3) -> three; call:
matching.number(3).

number(4) -> four;
number(5) -> five;
number(_) -> "Don't know".

Functions

-module(math).
-export([fact/1, fib/1]).

fact(0) -> 1;
fact(N) -> N * fact(N-1).

fib(1) -> 1;
fib(2) -> 1;
Fib(N) -> fib(N-1) + fib(N-2).

Lists

Erlang lists have similarities to Lisp/Scheme car
and cdr:

[H|T] = [1,2,3,4,5].
[H|T] is a CONS cell with CAR = H and CDR = t.
H gets bound to 1 and T gets bound to [2,3,4,5]

PL27

List Functions

lists:append([a,b,c], [1,2,3,4]).
L = [1,2,3,4].

lists:map(fun(X) -> 2*X end, L).
Small = fun(X) -> X < 3 end.
lists:map(Small, L).
lists:all(Small, [@,1,2]).
lists:any(Small, [2,4,6]).

List Comprehension:

[X || X <- L, X rem 2 == 0]

[2*X || X <- L].

CSIS 4244 Spring 2011

concurrency Basics Example - Translation Process
y -module(translate).
. . - Create p N
Erlang concurrency is based on message passing export([loop/e]). Pid = somun(fun translate:loop/).
. . 1 - .
It uses lightweight processes, not threads oop() = Send message:
« No shared resources that are bug prone 1->
R R R io:format("one~n"),
Everything is done using three concurrency 1loop();
primitives: 2>
io:format("two~n"),
spawn - creates a new process loop();
3 ->
! - send a message to a process 10: fornat ("three~n"),
receive - receives a message sent to a process loop();

->
io:format("I don't know~n"),
loop()

end.

PL27 -3-

