
CSIS 4244 Spring 2011

- 1 -PL25

Chapter 12

Concurrency – Java Threads

Concurrency in Java
All Java programs run in threads
When a Java application begins execution, a
new (single) thread is created and main is
called
A program becomes multithreaded if it
constructs and starts additional threads of
execution
Each thread has its own execution stack and
instruction pointer

Concurrency in Java
The concurrent units in Java are Thread objects that
include a run method (similar to a main)

The run method is inherited and overriden in
subclasses of the Thread class

Code for run can execute concurrently with other
such methods and with main

Java Thread Class Essentials

run – inherited and overridden in subclasses
start – calls run, after which control
immediately returns to start
yield – pauses execution of the thread and
puts it in the task ready queue, allowing other
threads to execute
sleep – blocks execution of the thread for a
specified amount of time

Java Thread Example
import java.util.Date;

public class MessageThread extends Thread {

private String message;
private static final int REPS = 10;
private static final int DELAY = 1000;

// Construct a thread object with message = m
public MessageThread(String m) {

message = g;
}

Java Thread Example,
continued

public void run() {
try {

for (int i = 1; i < REPS; i++) {
Date now = new Date();
System.out.println(now + " " + message);
sleep(DELAY);

}
} catch (InterruptedException e) {}

}
}

CSIS 4244 Spring 2011

- 2 -PL25

Java Thread Example, driver

public class MessageTest {

public static void main(String[] args) {
MessageThread t1 =

new MessageThread("Thread 1");
MessageThread t2 =

new MessageThread("Thread 2");
MessageThread t3 =

new MessageThread("Thread 3");
t1.start();
t2.start();
t3.start();

}
}

Competition Synchronization
with Java Threads

A method that includes the synchronized
modifier disallows any other method from
running on the object while it is being executed

Java associates a monitor with each object that
has a synchronized method

If only a part of a method must be run as a
critical section, just that part can be
synchronized

Competition Synchronization
with Java Threads

Communication between threads is provided
by the wait and notify methods
• Defined in Object so all objects inherit

them
• wait – suspends the thread until notify is

called for the object on which wait is
called

• notify – resumes one of the threads
waiting on this object

• The wait method must be called in a loop

Shared Buffer in Java

public class DataBuf {

private int[] queue;

private int nextIn, nextOut,
filled, qSize;

public DataBuf(int size) {

queue = new int[size];

filled = 0;

nextIn = nextOut = 1;

qSize = size;

}

Shared Buffer in Java, cont.
public synchronized void deposit(int item) {

try {

while (filled == qSize) {

wait();

}

queue[nextIn] = item;

nextIn = (nextIn + 1) % qSize ;

filled++;

notify();

} catch (InterruptedException e) {}

}

Shared Buffer in Java, cont.
public synchronized int fetch() {

int item = 0;

try {

while (filled == 0) {

wait();

}

item = queue[nextOut];

nextOut = (nextOut + 1) % qSize;

filled‐‐;

notify();

} catch(InterruptedException e) {}

return item;

}

CSIS 4244 Spring 2011

- 3 -PL25

Producer in Java
public class Producer extends Thread {

private DataBuf buffer;

private String name;

public Producer(DataBuf db, String n) {

buffer = db; name = n;

}

public void run() {

int newItem = initialvalue;

while (true) {

buffer.deposit(newItem);

// generate next newItem here

}

}

}

Consumer in Java
public class Consumer extends Thread {

private DataBuf buffer;
private String name;
public Consumer(DataBuf db, String n) {

buffer = db; name = n;
}
public void run() {

int item;
while (true) {

item = buffer.fetch();
// process item here

}
}

}

Producer/Consumer Test
Driver

public class Driver {
public static void main(String[] args) {

DataBuf buff1 = new DataBuf(10);
Producer prod1 =

new Producer(buff1, "Producer 1");
Consumer[] cons =

{new Consumer(buff1, "Consumer 1"),
new Consumer(buff1, "Consumer 2"),
new Consumer(buff1, "Consumer 3")};

prod1.start();
cons[0].start();
cons[1].start();
cons[2].start();

}
}

Evaluation
Relatively simple, but effective
(C# threads are a bit more advanced)

C# Threads
Basic thread operations

• Any method can run in its own thread
• A thread is created by creating a Thread object

• Creating a thread does not start its concurrent
execution - it must be requested through the Start
method

• A thread can be made to wait for another thread to
finish with Join

• A thread can be suspended with Sleep

• A thread can be terminated with Abort

C# Threads
Synchronizing threads

• The Interlock class (thread-safe
increment/decrements, assignment)

• The lock statement (marks a critical section)
• The Monitor class (similar to lock)

class C {
int[] q = new int[100];
int i = 0;
void Insert(int n) {

lock (this) q[i++] = n;
}

}

CSIS 4244 Spring 2011

- 4 -PL25

C# Threads
Evaluation

• An advance over Java threads, e.g., any method
can run its own thread

• Thread termination is cleaner than in Java
• Synchronization is more sophisticated

Potential for Concurrency in Scheme

AND – parallelism
(f a1 a2 a3 a4)

• Create 4 processes to evaluate each
argument concurrently

• Suspend f until all 4 processes are done
• Resume f when the 4 arguments are

available

