
CSIS 4244 Spring 2011

- 1 -PL24

Chapter 12
(Sec. 12.1 – 12.4)

Concurrency – Synchronization
with Semaphores and Monitors

Thread/Process
Thread - A program unit that can execute
concurrently with other program units.
Heavyweight process – Has its own address
space
Lightweight processes – Processes that share an
address space
Task – A well-defined unit of work performed by
some thread
*** No consistent definition for these terms ***

Concurrency Issues
Communication

How a thread obtains information produced by another
thread
• Shared memory
• Message passing

Synchronization
Controlling the relative order that operations occur in
different threads
• Busy-waiting (spinning)
• Blocking (scheduler-based)

Thread Creation
Control flow

Co-begin
Parallel loops

Subprograms
Launch-at-elaboration
Fork
Implicit receipt
Early reply

Co-begin

Co-begin and end bracket statements
(processes) that are all created and started in
parallel

co-begin
P1;
P2;
P3;

end;

P3

P2

P1

Parallel Loops
C#

Parallel.For(0, 3, i => {
Console.WriteLine("Thread " + i + " here");

});

High Performance Fortran (HPF)

forall (i=1:n‐1)

A(i) = B(i) + C(i)

A(i+1) = A(i) + A(i+1)

end forall

CSIS 4244 Spring 2011

- 2 -PL24

Launch-at-Elaboration
Ada tasks are created and begin execution
when the enclosing program unit starts

The program unit doesn’t terminate until all
enclosed tasks terminate

Each task has a single point of control

Ada Task Example
with text_io; use text_io;

procedure ConcurrentWriter is

task WriteA;
task body WriteA is

begin
for j in 1..10 loop

put('A'); new_line;
end loop;

end WriteA;

task WriteB;
task body WriteB is

begin
for j in 1..10 loop

put('B'); new_line;
end loop;

end WriteB;

begin
null;

end ConcurrentWriter;

Subprogram Concurrency
Tasks differ from ordinary subprograms in that:

1. A task may be implicitly started
2. When a program unit starts the execution of a

task, it is not necessarily suspended
3. When a task’s execution is completed, control

may not return to the caller

Tasks usually work together

fork in C
• fork function is executed in a parent

process and creates a child process
• Children share their parent’s code

• Child process begins executing immediately
after being created; and parent resumes

• The fork function returns the child’s
process ID number to the parent and
returns 0 to the child

• Processes are killed at the end of their code
• A wait function can be called to suspend a

parent until a child terminates

fork in C

int childNum = fork();
if (childNum == 0)

// child process code
else {

// parent process code
}

fork Example
#include <unistd.h>
#include <stdio.h>
int main() {

int pid; int status;
printf("Here we go\n");
pid = fork();
if (pid == 0) { // pid == 0 in child process

printf("I'm the child process.
I got %d as pid!\n", pid);

sleep(4);
} else { /* pid > 0 in the parent process */

printf("I'm the parent process.
My child's pid = %d\n", pid);

wait(&status); // Wait for child to terminate
printf("Child done. status = %d\n", status);

}
}

CSIS 4244 Spring 2011

- 3 -PL24

fork Example Synchronization
Mechanism that controls the order in which
tasks execute
Required when a task must wait for some other
task to complete an activity before it can
continue
Task communication is necessary for
synchronization
Involves exchange of control info

Interaction Between Tasks
Communication

Sharing and exchanging information between tasks

1. Parameters
2. Shared non–local variables (shared memory model -

must guarantee mutually exclusive access)
3. Message Passing (distributed processing model)

Interaction Between Tasks
Synchronization – mechanism that controls the
order in which processes execute

• Competition – each process requires
exclusive use of a resource

• Cooperation – two processes work on parts
of the same problem

Implementing Synchronization

Make some operation atomic

• Mutual exclusion – only one thread is executing a
critical section at any given point in time

Methods for Providing Synchronization

• Semaphores

• Monitors

• Message Passing

Semaphores
Introduced by Edsger Dijkstra in 1965
A data structure consisting of

An integer counter
A queue of suspended tasks

There are two atomic (indivisible) operations
wait
release
(originally called P and V – see Fig. 12-14 for detained
implementation)

Can be used to provide both cooperation and
competition synchronization

CSIS 4244 Spring 2011

- 4 -PL24

Semaphore - WAIT

procedure wait(sem)

if sem.counter > 0 then
sem.counter--

else
put the calling task in sem.queue
transfer control to a task from ready-list
// Deadlock if none are ready

end

Semaphore - RELEASE

procedure release(sem)

if sem.queue.is_empty() then
sem.counter++

else
put calling task in ready-list
transfer control to a task from sem.queue

end

Shared Data and Semaphores
Critical Section – a portion of code that must
be treated as an atomic unit
Access to shared data occurs in a critical
section that is guarded by a semaphore

task A
.
.
.

wait(sem);

task B
.
.

wait(sem);

Critical
section

Critical
section

release(sem);
.

release(sem);
.

Shared data

Initialize sem.counter = 1

Shared Data and Semaphores

The previous example used a binary semaphore

• Counter initialized to 1
• Guarantees mutual exclusion of critical section by

requiring wait/release operations to occur
alternately

Cooperation Synchronization with
Semaphores

Shared buffer example

• The buffer is implemented as an ADT with the
operations DEPOSIT and FETCH as the methods to
access the buffer

• Use two semaphores for cooperation:
emptyspots and fullspots

• The semaphore counters are used to store the
numbers of empty spots and full spots in the buffer

DEPOSIT

DEPOSIT must first check emptyspots to see
if there is room in the buffer

If there is room,
decrement emptyspots counter
and insert the value

If there is no room,
put the caller in emptyspots queue

When DEPOSIT is finished, it increments
the fullspots counter

CSIS 4244 Spring 2011

- 5 -PL24

FETCH
FETCH must first check fullspots to see if
there is a value

If there is a full spot,
decrement the fullspots counter
and remove a value

If there are no values in the buffer,
put the caller in the fullspots queue

When FETCH is finished, it increments the
emptyspots counter

Example — Cooperation
semaphore fullspots,

emptyspots;
fullspots.count = 0;
emptyspots.count = BUFLEN;

task producer;

loop

-- produce value

wait(emptyspots)

DEPOSIT(value);

release(fullspots)

end loop;

end producer;

task consumer;

loop

wait(fullspots)

FETCH(value);

release(emptyspots)

-- consume value

end loop;

end consumer;

Competition Synchronization with
Semaphores

fullspots and emptyspots are used for
cooperation

• Make sure there is data for the consumer
• Make sure there is space for the producer

A binary semaphore, named access, is used to
control access to the shared buffer

• Prevent the producer and consumer from using
the same buffer location at the same time
(competition synchronization)

Example — Cooperation/Competition

task producer;

loop

-- produce value

wait(emptyspots)
wait(access)

-- deposit value
release(access)

release(fullspots)

end loop;

end producer;

task consumer;

loop

wait(fullspots)
wait(access)

-- get value
release(access)

release(emptyspots)

-- consume value

end loop;

end consumer;

Evaluation of Semaphores
Misuse of semaphores can cause failures in

1. Cooperation synchronization
e.g., the buffer will overflow if the wait of fullspots
is left out

2. Competition synchronization
e.g., The program will deadlock if the release of
access is left out

Per Brinch Hansen (1973)

“ The semaphore is an elegant synchronization tool for
an ideal programmer who never makes mistakes”

Monitors
Introduced by Brinch Hansen in 1973
Abstract Data Type for shared data
The idea: encapsulate the shared data and its
operations to restrict access
Instances are statically created by declarations
Hybrid implementations in Ada, Java, C#

CSIS 4244 Spring 2011

- 6 -PL24

Monitors – Concurrent Pascal Style

An instance is “started” by init, which
allocates its local data and begins its
execution

init

Monitors – Competition

A monitor allows only one process at a time
to execute the monitor’s subprograms

• Calls are queued if the monitor is busy at
the time of call

Shared data and access methods reside in
the monitor, not in the client program
Mutually exclusive access to shared data is
built in

Shared Buffer with Monitors
type databuf = monitor
const bufsize = 100;
var buf : array[1..bufsize] of integer;

next_in, next_out : 1..bufsize;

filled : 0..bufsize;
sender_q, receiver_q : queue;

procedure entry deposit(item : integer);
begin
if filled = bufsize then delay(sender_q);
buf[next_in] := item;
next_in := (next_in mod bufsize) + 1;
filled := filled + 1;
continue(receiver_q);

end;

Shared Buffer with Monitors
procedure entry – only one can be
executing at any given time
delay – places process that calls it in the
specified queue and removes its exclusive
access rights to the monitor
continue – disconnect process that calls it
from the monitor and check specified queue
for processes suspended by a delay operation

Shared Buffer with Monitors

Initialization code for databuf:

begin
filled := 0;
next_in := 1;
next_out := 1;

end;

Shared Buffer with Monitors

type producer =
process(databuf:db)

cycle

-- produce value nv

buffer.deposit(nv)

end;

end producer;

type consumer =
process(databuf : db)

cycle

buffer.fetch(sv)

-- consume value sv

end;

end consumer;

CSIS 4244 Spring 2011

- 7 -PL24

Shared Buffer with Monitors
Program that uses shared buffer:

var a_producer : producer;
a_consumer : consumer;
a_buffer : databuf;

begin

init

a_buffer, a_producer(a_buffer),

a_consumer(a_buffer);

end;

Evaluation of Monitors

The monitor ADT avoids competition
synchronization problems that can occur with
semaphores
Co-operation has the same problems as
semaphores
Java threads are based on the idea of monitors

