
CSIS 4244 Spring 2011

- 1 -PL23

Chapter 12
Concurrency

Sequential Processing
Thread of Control: Sequence of program points
reached as control passes through the program
Sequential: Has a single thread of control

Decision point
for if-else

(only one path
taken)

Concurrent Systems
Concurrent:

More than one task can be underway at the
same time

Parallel:
More than one task can be physically active at
the same time

Distributed:
A parallel system with processors that are
physically separate

Categories of Concurrency
Physical Concurrency (parallel): Multiple
independent processors (multiple threads of
control)
Logical Concurrency: appearance of physical
concurrency (time–slicing on one processor)

Levels of Parallelism
Instruction Level (ILP): Microprocessor
architecture

Vector Parallelism: Perform repeated
operations on every element of a large data set
(single instruction multiple data - SIMD)

Thread-level Parallelism: Multicore
processors/multiple processors (multiple
instruction multiple data – MIMD)

Why Study Concurrency
1. Capture logical structure of a problem. Many

real-world situations involve concurrency
(operating systems, simulations, scientific
visualization, AI, multimedia, …)

2. Exploit extra processors. Computers capable
of physical concurrency are now common

3. Cope with separate physical devices.
Embedded control systems, Internet
applications, …

CSIS 4244 Spring 2011

- 2 -PL23

Multiple Cores/Processors
Computers capable of physical concurrency are
now common

• Quad-core & Core-2 Quad (Intel)
• Xenon (3 core, Xbox 360)
• Cell (8 core, Sony PlayStation 3)
• Power7 (8 core, Watson has 650 of these)

Tianhe-1A (China)
14,336 Xeon X5670 processors (6 core) and

7,168 Nvidia Tesla M2050 GPUs + more

Models of Concurrency
Shared memory Distributed System

CPU CPU

Memory

CPUCPUCPU

Memory MemoryMemory

Models of Concurrency
Important Issues

Synchronized access to shared memory

Message passing between processes that don't
share memory

Race Conditions
Occurs when actions in two processes
are not synchronized and program
behavior depends on the order in
which the actions happen
• Usually want to avoid this

Race Conditions
Suppose processors A and B share memory, and
both try to increment variable X at the same time

• Each processor executes
LOAD X
INC
STORE X

Value of X: 5

Proc. A

Proc. B

LOAD X

LOAD X INC

INC

STORE X

STORE X

6 6

Other possibilities?

Synchronization

Mechanism that controls the order in which
processes/tasks execute
Can be used to eliminate race conditions
• In the example we need to synchronize the increment

operations to enforce mutually exclusive access to X

Requires a mechanism for delaying task execution
• Task scheduling

Task communication is needed for synchronization

CSIS 4244 Spring 2011

- 3 -PL23

Kinds of Synchronization
Cooperation

• Task A waits for Task B to complete some activity
before it continues

• The two tasks work on parts of the same problem

Competition
• Different tasks need exclusive use of the same

resource

