
CSIS 4244 Spring 2011

- 1 -PL22

Chapter 7
Pointers and References

Pointers
Values are memory addresses plus NULL/NIL
Uses

• Addressing flexibility
• Dynamic storage management
• Aliasing

Pointers (or references) are necessary for
dynamic data structures

Pointers and Recursive Types

Figure 7.11 Implementation of a tree in Lisp. A diagonal slash through a box indicates a
null pointer. The C and A tags serve to distinguish the two kinds of memory blocks: cons
cells and blocks containing atoms.

Pointers – Design Issues
What is the scope and lifetime of a pointer
variable?
What is the lifetime of the object it points to?

• A heap-dynamic variable

Any restrictions to reference only certain types?
How to manage dynamic storage?

Pointers – Operations
(1) Assignment of an address to a pointer
(2) Referencing

• Implicit (array elements, like a[5])
• Explicit (dereferencing operator, like *p in C)

Arithmetic operations (pointer arithmetic)
Comparison

• Complete (>, <, >=, <=, ==, !=)
• Partial (== or !=)

Pointers in C

int x, y, *z;
x = 10;
y = 20;
z = &y;
x = y + *z;
z = &x;
x = y + *z;
z++;
x = y + *z;

Address Contents

0999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

x

y

z

CSIS 4244 Spring 2011

- 2 -PL22

Pointers in C

head

value next

2 3 6 7

struct Node {
int value;
struct Node *next;

}
struct Node *head;

struct Node *p = head;
while(p != NULL && p->value != x) {

p = p->next;
}

More Pointer Examples
C, C++

Arrays, records, unions, function names are all
pointers in disguise

double a[10];

double * aptr = a;

*(aptr+3) aptr[3] a[3]

void *p; can point to any type!

More Pointer Examples
C++ reference types

Used for reference parameters

void double(int &x) {
x = 2*x;

}

int y = 10;
double(y);

Java
• Only has references
• No explicit deallocation, uses garbage collection

Dynamic Data
Two basic memory operations with dynamic data

• Object creation allocates heap storage for an
element.

• Object destruction returns heap storage to the OS
for later use.

Example in C
void *malloc(int number_of_bytes)

Allocates a contiguous amount of memory of the
specified type and returns the address of the first
byte.

void free(void *p)
De-allocates the memory referenced by p

Dynamic Data in C
// Dynamic data and pointer arithmetic
char *makeHelloString() {

char *str = (char*)malloc(6 * sizeof(char));

*str = 'h';
*(str+1) = 'e';
*(str+2) = 'l';
*(str+3) = 'l';
*(str+4) = '0';
*(str+5) = (char)0;
return str;

}

Pointer Efficiency
Pointers can be used to efficiently pass lots of
data!

• C always uses pass by value
• When a pointer is passed, how much data is copied?

char *str =
(char *)malloc(5000 * sizeof(char));

someStringFunction(str);

CSIS 4244 Spring 2011

- 3 -PL22

Pointers – Problems
Dangling pointers

Pointer points to a heap object that has been
explicitly deallocated or has gone out of scope

Memory leaks
Pointer points to a heap object, then gets
reassigned without deallocating the memory of
the first one

Aliasing
More than one reference to the same memory
location

Java and Garbage Collection
Object creation uses new

Object destruction?
• Java doesn’t let programmers deallocate memory

because they’ll probably create dangling pointers
and memory leaks

• Memory that's been allocated but no longer in use is
"garbage collected"

Reference counting
Mark-and-sweep

