
CSIS 4244 Spring 2011

- 1 -PL21

Chapter 7
(Selected Topics)

Data Types, Compatibility,
Arrays

Type Checking
The process of ensuring that the operands of
an operator are of compatible types

Compatible type: one that is either legal for
the operator, or is allowed under language
rules to be implicitly converted to a legal
type

Type error: attempting an operation on a
value for which the operation is not defined

Strong Typing
A programming language is strongly typed if
type compatibility rules are always enforced
(prevents applying an operation to data for
which it is not appropriate)

Strong typing can be an effective tool for
improving the reliability and security of
programs

• Never trust user supplied data

Type Binding
Static: Done at compile time (e.g. Ada, C)
Dynamic: Done at run time

(e.g. JavaScript, Ruby)
JavaScript:

list = [2, 4.33, 6, 8];

list = 17.3;

Java has aspects of both

Coercion
Weakens strong typing
Implicit type conversion
Used extensively in C++ (operator overloading)
Example:

int i, j = 3;

i = j + 2.718;

1) Convert j to double
2) Add j and 2.718 to get a double
3) Truncate the result to int and assign to i

Coercion
Not allowed in Ada
Example:

i, j : Integer;

. . .

j := 3;

i := Integer((Float(j) + 2.718) - 0.5);

Type
conversions
(explicit)

CSIS 4244 Spring 2011

- 2 -PL21

Array Types
An array is an aggregate of (usually)
homogeneous data where an individual
element is identified by its position relative to
the first element.

A heterogeneous array is one in which the
elements need not be of the same type
(e.g. Perl, Python, JavaScript, and Ruby)

Array Design Issues
• What types are legal for subscripts?
• Are subscripting expressions in element

references range checked?
• When are subscript ranges bound?
• When does allocation take place?
• What is the maximum number of subscripts?
• Can array objects be initialized?
• Are slices supported?

Array Indexing
Indexing (or subscripting) is a mapping from
indices to elements

array_name(index_value_list)  an element

Index Syntax
• FORTRAN, Ada use parentheses

Ada uses parentheses to show uniformity
between array references and function calls
because both are mappings

• Most other languages use brackets

Arrays Index Types

FORTRAN, C, Java: integer only
Ada: integer or enumeration (includes Boolean
and char)
Java: integer only, starting at 0
C#: integer or string (actually a hash)
Index range checking

C, C++, Perl, and Fortran do not use range checking
Ada, Java, C# enforce range checking

Subscript Binding and Storage
Allocation

Static: subscript ranges are statically bound
and storage allocation is static (before run-
time)

• Advantage: efficiency (no dynamic allocation)

Stack-dynamic: subscript ranges are
dynamically bound and the storage allocation
is dynamic (done at run-time)

• Advantage: flexibility (the size of an array need
not be known until the array is to be used)

Subscript Binding and Storage
Allocation

Fixed heap-dynamic: storage binding is
dynamic but fixed after allocation (storage is
allocated from heap, not stack)

• Advantage: space efficiency

Heap-dynamic: binding of subscript ranges and
storage allocation is dynamic and can change
any number of times

• Advantage: flexibility (arrays can grow or shrink
during program execution)

CSIS 4244 Spring 2011

- 3 -PL21

Subscript Binding and Storage
Allocation

C examples:

C# ArrayList class provides fixed heap-dynamic

Perl, JavaScript, Python, and Ruby support heap-
dynamic arrays

int foo (int v) {

int y[7]; /* fixed stack dyanmic array */

int w[v]; /* stack dynamic array */

int f[] = (int[])malloc(30);
/* fixed heap dynamic array */

}

Array Implementations
Access function maps subscript expressions to
an address in the array
Access function for single-dimensioned arrays:

address(list[k]) =
address(list[lower_bound])

+ ((k‐lower_bound) * element_size)

Array Implementations
Two layout strategies:

• Contiguous elements
• Row pointers

Row pointers
• an option in C
• allows rows to be put anywhere - nice for big arrays
• nice for arrays with variable length rows

e.g. an array of strings
• requires extra space for the pointers

Copyright © 2009 Elsevier

Array Implementations

Accessing Multi-dimensioned Arrays
Two ways:

• Row major order
• Column major order – just Fortran

A[0,4] .. A[0,7] A[4,0] .. A[7,0]

