
CSIS 4244 Spring 2011

PL02 1

CSIS 4244
History and Evolution of Programming

Languages

In the beginning there was
machine language…

No, wait… in the beginning there was Ada!

Augusta Ada King, Countess of Lovelace
(10 December 1815 – 27 November 1852),
born Augusta Ada Byron, was an English
writer chiefly known for her work on Charles
Babbage's early mechanical general-purpose
computer, the analytical engine. Her notes on
the engine include what is recognised as the
first algorithm intended to be processed by a
machine; as such she is regarded as the
world's first computer programmer.

- Wikipedia

1940’s – 1950’s
In the beginning there was machine
language…

• Numeric codes
• Tedious & error prone

Then assembly language
• Mnemonics replace numbers
• One-to-one: machine instruction to assembler

Low Level Code
Example 1.1: GCD program in x86 machine language

Example 1.2: GCD program in x86 assembler

Konrad Zuse: Plankalkül
His greatest achievement was the world's first functional program-
controlled Turing-complete computer, the Z3, which became
operational in May 1941.

While working on his Z4 computer, Zuse realised that programming in
Machine code was too complicated, so he designed the first high-level
programming language, Plankalkül ("Plan Calculus"), in 1945/6.

- Wikipedia

"The very first attempt to devise an algorithmic language was
undertaken in 1948 by K. Zuse. His notation was quite general, but
the proposal never attained the consideration it deserved."

- Heinz Rutishauser (ALGOL)

Plankalkül Syntax
Advanced data structures

Floating point, arrays, records

Invariants
Example:

An assignment statement to assign the expression A[4] + 1 to A[5]

| A + 1 => A

V | 4 5 (subscripts)
S | 1.n 1.n (data types)

CSIS 4244 Spring 2011

PL02 2

FORTRAN
FORTRAN I & II – 1957
Designed for the "new" IBM 704

Computers were slow and unreliable
Applications were scientific
No programming methodology or tools
Machine efficiency was most important

(Optimizing compilers)

FORTRAN (continued)

Characteristics
• Fixed format
• Names up to six characters
• Implicit typing
• Formatted I/O
• DO loop (counting)

DO I = 1,5
• Three-way selection statement (arithmetic IF)

IF (X-Y) 10,20,30

FORTRAN (continued)

FORTRAN IV – (1960-62)
o Explicit type

declarations
o Logical selection

statement
o ANSI standard in 1966

FORTRAN 77
o Character string handling
o Logical loop control

statement

o IF-THEN-ELSE statement

FORTRAN 90
o Modules, Parameter type

checking
o Dynamic arrays, Pointers
o Recursion, CASE statement

FORTRAN 95
FORTRAN 2003

and in Sept. 2010…
FORTRAN 2008

LISP (1959)
LISt Processing language (Designed at MIT by John
McCarthy – didn’t think FORTRAN was much better than
assembler)

For AI research
• Process data in lists (rather than arrays)
• Symbolic computation (rather than numeric)
• Interactive

Only two data types: atoms and lists
Uniform representation of data and code
Simple syntax
Compact clear semantics

LISP (continued)
Pioneered functional programming
No need for variables or assignment
Control via recursion and conditional
expressions
Still a dominant language in AI

Scheme is a smaller and simpler version of
LISP popular for educational applications

(define gcd

(lambda (a b)

(cond ((= a b) a)

((> a b) (gcd (- a b) b))

(else (gcd (- b a) a)))))

GCD in Scheme

CSIS 4244 Spring 2011

PL02 3

ALGOL 58/60
Language features

• Concept of type was formalized
• Arrays could have any number of

subscripts
• Parameters modes (in & out)
• Compound statements (begin..end)
• Semicolon as a statement separator
• if had an else‐if clause
• Subprogram recursion
• No I/O

ALGOL (continued)
Successes:

• The standard way to publish algorithms for over
20 years

• All subsequent imperative languages are based
on it

• ALGOL 68 strongly influenced Pascal, C, and Ada

• First machine-independent language
• First language whose syntax was formally

defined (BNF)

ALGOL (continued)

Failures:
• Never widely used (especially in U.S.) because

• No I/O and the character set made programs non-
portable

• Too hard to implement
• IBM supported FORTRAN
• Formal syntax description considered too complex

COBOL (1960)
COmmon Business Oriented Language -
Designed by a committee from government
(Grace Hopper) & industry

• DoD’s first effort to provide a single language for all
military branches

• English-like syntax, verbose
• Source of many Y2K problems
• For many years was the most widely used business

application language
• Cobol 2002 is object-oriented

SNOBOL (1964)

String Oriented SymBOlic Language -
Designed as a string manipulation language (at
Bell Labs by Farber, Griswold, and Polensky)

• Powerful operators for string pattern matching
• Dynamic typing and storage allocation
• Variables are untyped

• They acquire a type when assigned a value
• Storage is allocated to a variable when it is assigned a

value

PL/1 (1965)

Programming Language 1 – Major IBM effort
to combine scientific and business languages

• First unit-level concurrency
• First exception handling
• Too large, too complex, many poorly designed

features
• Was (and still is) used for both scientific and

business applications

CSIS 4244 Spring 2011

PL02 4

SIMULA 67

Simulation Language
• Designed primarily for system simulation (in Norway

by Nygaard and Dahl)
• Based on ALGOL 60
• Classes are the basis for data abstraction
• The beginnings of object oriented programming

Pascal (1971)

Named after Blaise Pascal, inventor of
mechanical calculator

• Designed by Niklaus Wirth (who quit the ALGOL 68
committee)

• Designed for teaching structured programming
• Nothing new, just small and simple
• Once the most widely used language for teaching

programming in colleges

C (1972)
Designed for systems programming (at
Bell Labs by Dennis Richie)

• Evolved from B and ALGOL 68
• Powerful set of operators, but poor type checking
• Initially spread as the way to port UNIX

int gcd(int a, int b) {
while (a != b) {

if (a > b) a = a - b;
else b = b - a;

}
return a;

}

Perl

A scripting language developed by Larry Wall
A script (file) contains instructions to be executed

Originally for report processing in Unix but widely
used as a general purpose language
Powerful but somewhat dangerous

Prolog (1972)

Programming in Logic - Developed at the
University of Aix-Marseille, and the
University of Edinburgh

• Based on formal logic
• Non-procedural
• For creating rule-based systems
• Intelligent database system that uses an inferencing

process to determine the truth of given queries

gcd(A,B,G) :- A = B, G = A.

gcd(A,B,G) :- A > B, C is A-B, gcd(C,B,G).

gcd(A,B,G) :- B > A, C is B-A, gcd(C,A,G).

GCD in Prolog

CSIS 4244 Spring 2011

PL02 5

Smalltalk (1972-1980)

Developed at Xerox PARC, initially by
Alan Kay & later by Adele Goldberg

• First full implementation of an object-oriented
language (data abstraction, inheritance, and
dynamic type binding)

• Pioneered the graphical user interface that everyone
uses now

Ada (1983 but began in
mid-’70s)

Motivated by
• The “software crisis”
• Having over 450 languages being used for

embedded systems
• Another DoD attempt at a "do everything" language

• Huge design effort, involving hundreds of people,
much money, and about eight years

Ada (continued)
Competitive design
Included all that was then known about
software engineering and language design
Compilers were very difficult to implement;
the first really usable compiler came nearly
five years after the language design

Ada (continued)

Contributions:
• Packages (support for data abstraction)
• Exception handling
• Generic program units
• Concurrency (through the tasking model)

Ada (continued)

Ada 95 - (began in 1988)
• Support for OOP through type derivation
• Better control mechanisms for shared data (new

concurrency features)

Ada 2005
• Emphasis on “safety-critical” systems
• Language subsets
• No DoD funding this time

C++ (1985)

Developed at Bell Labs by Bjarne
Stroustrup

• Evolved from C and SIMULA 67
• A large and complex language, in part because it

supports both procedural and OO programming
• Popularity grew rapidly, along with OOP
• ANSI standard approved in November 1997

CSIS 4244 Spring 2011

PL02 6

Eiffel (1992)

Designed by Bertrand Meyer
• Not directly derived from any other language
• Influenced by many (Ada, SIMULA, Smalltalk, etc.)
• True object oriented language
• Support for assertions

Java (1995)

Developed at Sun Microsystems
• Based on C++ but significantly simplified
• Supports only OOP
• Has references, but not pointers
• Concurrency using threads

Other Scripting Languages
PHP

• Used for Web applications (server-side); produces
HTML markup as output

JavaScript
• Used in Web programming (client-side) to create

dynamic HTML documents
• Related to Java only through similar syntax

Python
• An OO interpreted scripting language
• Type checked but dynamically typed

Ruby
• Pure object-oriented language
• Both objects and classes are dynamic

C#
Part of the .NET development platform
Based on C++ and Java
A language for component-based software
development
All .NET languages (C#, Visual BASIC .NET,
Managed C++, J#, and ECMAscript) use Common
Type System (CTS), which provides a common
class library
Becoming widely used

Markup/Programming Hybrid Languages

XML
• eXtensible Markup Language: a metamarkup

language
XSLT

• eXtensible Stylesheet Language Transformation
(XSTL) transforms XML documents for display

• Programming constructs (e.g., looping)
JSP

• Java Server Pages: a collection of technologies to
support dynamic Web documents

• servlet: a Java program that resides on a Web server;
servlet’s output is displayed by the browser

Implementation Methods –

Compiled vs. Interpreted

Compilation: A translator brings
the language down to the level
of the machine.

Executable
target program

CPU

Input Output

Interpretation: A virtual
machine brings the machine
up to the level of the
language.

Input

Source program
Interpreter

CPU
Output

CSIS 4244 Spring 2011

PL02 7

Hybrid Implementation
Currently the most common method

CPU

