
CSIS 4244 Spring 2011

- 1 -PL14

Chapter 6
(6.2 – 6.5)

Sequence, Selection, and
Iteration

Sequential Control

Assignment
• Changes the state of memory (modify

variable contents)
• Does not interfere with normal flow of

control
• Control moves sequentially to the next

statement

C Assignment Problem
Because C does not have a boolean data type
and assignment is an expression, the following
is possible

if (x = y) { … }

When will the condition succeed? Fail?

Control Flow Instructions
Do not change the state of memory
Directs the thread of computation

• What hardware manages the point of control?

Low level control flow uses the goto
instruction (machine/assembler)

The GOTO Instruction
Forward goto skips code
Backward goto repeats code
Unconditional vs. Conditional goto
The goto was very controversial in the days of
structured programming

Goto Is Bad?
In 1968, Dijkstra wrote the paper

"Goto Statement Considered Harmful"
Said goto is too primitive and an invitation to
make a mess of one's programs
Advocated structured programming

CSIS 4244 Spring 2011

- 2 -PL14

Spaghetti Code
A BASIC Example

10 GOTO 40

20 STOP

30 GOTO 60

40 IF N < 1 THEN GOTO 20

50 J = 1

60 GOTO 70

70 PRINT J

80 GOTO 110

90 IF J>N THEN GOTO 20

100 GOTO 30

110 J = J+1

120 GOTO 90

D-Structures (Dijkstra)
A class of simple control structures:

• Basic actions (assignment, subroutine
call, …)

• Selection (if‐then‐else)
• Iteration (while)

• Sequence of D-structures

Boehm – Jacopini Theorem (1966)

1) Any proper program can be written using
only D-Structures
2) For any proper program, there exists a
functionally equivalent program which uses
only D-structures

• Proper program – One-entry, one-exit, no
infinite loops, no unreachable code

• Functionally equivalent programs – Given the
same input, they produce the same output

Ada has a goto!
loop

get(x);

if x = 0 then

goto Finished;

end if;

sum := sum + x;

end loop;

<<Finished>>

put(sum);

Restricted GOTOs
FORTRAN – GOTO restricted to current
subprogram
Pascal – GOTO cannot jump into a block, loop,
or if-then-else from outside
Ada – Similar to Pascal, and has EXIT, RETURN
Java – Gone! (has exit, break & return)

C# - Still there!

Selection Statements
Components

• A control expression
• Statement(s) selected by the control

Common forms include
• IF-THEN
• IF-THEN-ELSE
• CASE

Implemented as conditional branches in
machine/assembler

CSIS 4244 Spring 2011

- 3 -PL14

The IF Statement
FORTRAN's first generation IF:

IF (X.GT.0) X = X – 1

IF (X.LE.0) GO TO 20

X = X - 1

20 CONTINUE

The IF Statement
ALGOL60 added an ELSE clause
Both the IF-THEN and IF-THEN-ELSE support
two-way selection
Perl's unless reverses the logic of the
selection:

unless ($x == 0) {

$z = $y/$x;

}

Or Ruby:
z = y / x unless x == 0

The IF Statement
Ada, has elsif clauses to support multi-way
selection:
(so does Perl and Ruby)

if (x < 10) then
…

elsif (x < 20) then
…

elsif (x < 30) then
…

else
…

endif;

Multi-way Selection
Three way selection - FORTRAN arithmetic IF:

IF (2*X+1) 10, 20, 30

10 …

GO TO 40

20 …

GO TO 40

30 …

40 CONTINUE

< 0 = 0 > 0

Multi-way Selection
FORTRAN Computed GOTO

GO TO (10, 20, 30, 40), X
10 …

GO TO 50
20 …

GO TO 50
30 …

GO TO 50
40 …
50 CONTINUE

X = 1 2 3 4

Does this remind you of anything?

Multi-way Selection
C++/Java Switch Statement

switch (x) {

case 1: … ;

break;

case 2:

case 3: … ;

break;

default: …;

}

CSIS 4244 Spring 2011

- 4 -PL14

C# switch Statement
Case "fall through" is not allowed, except when
a case is empty
goto can be used to force fall through

switch (x) {
case 1:
case 2: // ok to stack cases

…;
goto case 3; // forced fall through

case 3: … ;
break;

default: …;
}

The case selector expression can also be a string

Multi-way Selection
Ada CASE Statement

CASE X IS

WHEN 1..5 | 9 => …;

WHEN 6, 7 => …;

WHEN 8 => …;

WHEN OTHERS => …;

END CASE;

Iterative Statements
Components

• Type of control (counter, logic)
• Location of control mechanism

(pretest, postest, …)
• Number of exits allowed

Enumeration (Counter)
Controlled Loops

Uses a loop control variable to determine the
number of iterations
Often the simplest loop to use, but…
Have the most complex design

Enumeration Controlled Loops

FORTRAN DO loop
DO 20 I = 1, 10, 1

…
20 CONTINUE

The LCV is updated automatically
Originally it was a post test loop (condition was tested
at end of loop)
FORTRAN77 changed this to pre test

Lower
limit

Upper
limit

Step
(optional)

Enumeration Controlled Loops

"Operational semantics" of original DO loop:

Lower = 1

Upper = 10

Step = 1

I = Lower

L1: -- body of loop

I = I + Step

IF I <= Upper GO TO L1

CSIS 4244 Spring 2011

- 5 -PL14

Enumeration Controlled Loops

Operational semantics of FORTRAN77 DO loop
(simplified) :

Lower = 1
Upper = 10
Step = 1
I = Lower

L1: IF I > Upper GO TO L2
-- body of loop

I = I + Step
GO TO L1

L2:

Enumeration Controlled Loops

Pascal FOR loop example:
var i : Integer;
for i := 1 to 10 do

begin
…

end

Loop control variable semantics
• Bounds are evaluated once on entry to loop
• Cannot be changed in the loop
• Cannot be a parameter (must be a local var)
• Cannot be passed by reference to a subroutine
• Is undefined on loop exit

Enumeration Controlled Loops

C/Java FOR loop
for(int i = 0; i <= 10; i++) {

…

}

The for loop does not have to be used as a
counting loop (C++ examples):

for (cin >> i; i != 0; cin >> i) { … }

for (p = head; p != null; p = p‐>next) { … }

Initialize Pretest
condition

Update
after iteration

Logic Controlled Loops
More general than counter controlled
Pretest loops

 0 iterations
while loops

Posttest loops
 1 iterations
Repeat-until, do-while loops

General loops
Programmer selected exit points

Logic Controlled Loops

Pretest loop (C++):
sum = 0;

cin >> val;

while (val >= 0) {

sum = sum + val;

cin >> val;

}

Operational Semantics:

sum = 0
read(val)

L1: if val<0 goto L2
sum = sum + val
read(val)
goto L1

L2:

Logic Controlled Loops
Posttest loop:

digits = 0;

cin >> val;

do {

val = val / 10;

digits++;

} while (val > 0);

Operational Semantics:

digits = 0
read(val)

L1: val = val / 10
digits = digits + 1
if val > 0 then goto L1

CSIS 4244 Spring 2011

- 6 -PL14

Logic Controlled Loops
General loop:

sum = 0;

while (true) {

cin >> val;

if (val==0) break;

sum = sum + val;

}

Operational Semantics:

sum = 0
L1: read(val)

if val = 0 then goto L2
sum = sum + val
goto L1

L2:

Ada Loops

EBNF syntax
<Ada-loop> ::= [<iteration-spec>] loop

<loop-body>

end loop

<iteration-spec> ::= while <condition> |

for <index-param> in [reverse] <range>

Note: The <index-param> of a for loop has the loop
body as its scope

Data Controlled Loop
Perl's foreach loop

@a = (10, 25, 51, 68, 50, 32);
foreach $x (@a) {

print $x;
}

Can also use
@a = (10, 25, 51, 68, 50, 32);

foreach (@a) {
print;

}

Data Controlled Loop
C# has a similar construct

int[] a = new int []{10,25,51,68,50,32};

foreach (int x in a) {

Console.Write(x);

}

Java for loop version for classes with iterators
int [] a = {10,25,51,68,50,32};

for (int x : a) {

System.out.print(x)

}

Looping in Eiffel
Incorporates initialization code with the loop:

from

i := 1;

until i = 10 loop

…

i := i + 1;

end;

from

read x;

until x = 0 loop

…

read x;

end;

Looping in Eiffel
Linear search

from

i := 0;

until i >= A.Size or A[i] = key

loop

i := i + 1;

end;

CSIS 4244 Spring 2011

- 7 -PL14

Guarded Commands
(Dijkstra, 1975)

The guarded if (non-deterministic)
• Conditions are called guards
• Evaluate all guards
• Statements with TRUE guards are open
• Randomly choose one of the open guards and

execute the statement
if g1 -> stmt1;
[] g2 -> stmt2;
…

[] gk -> stmtk;
fi

Guarded Commands
Example to find maximum of 2 values

if x >= y -> max := x;

[] y >= x -> max := y;

fi

Note that the case where x = y is non-
deterministically handled by either statement

Guarded Commands
Guarded do loop

• Evaluates all guards
• Non-deterministically select an open statement

to execute
• Exit when all guards are false

do g1 -> stmt1;
[] g2 -> stmt2;
…

[] gk -> stmtk;
od

Guarded Commands

Example to sort 4 values in ascending order so
that w  x  y  z

do w > x -> swap(w, x);

[] x > y -> swap(x, y);

[] y > z -> swap(y, z);

od

Guarded Commands
Guarded commands are important in
concurrent programming

