
CSIS 4244 Spring 2011

- 1 -PL13

Chapter 6

Control Flow: Expressions

Expressions
Implementation involves fetching
operands and executing operations
Precedence and associativity of
operations are primary design issues
C and C++ have over 50 operators and 15
levels of precedence
Recall syntax directed semantics in BNF
rules for arithmetic expressions

Copyright © 2009 Elsevier

Figure 6.1 Operator precedence levels in Fortran, Pascal, C, and Ada.
The operators at the top of the figure group most tightly.

Operand Evaluation & Side Effects

Consider the following C++ example:

int a[20]; // 20 element array

int i = 10;

a[i] = i++;

What value gets stored where???
What if the last statement is changed to:

a[i] = ++i;

or

a[i++] = i;

Another C++ example

// x uses pass by reference

int f(int & x) {

int t = x;

x = x – 5;

return 2 * t;

}

int x = 5;

int y = x + f(x);

Operand Evaluation & Side Effects

Some optimizing compilers
rearrange/reorder operand evaluation to
generate more efficient object code
Ada does not allow functions to create
side effects (no OUT parameters
allowed)

Operand Evaluation & Side Effects

CSIS 4244 Spring 2011

- 2 -PL13

Boolean Expressions
Precedence levels of Boolean operators (and
relational operators) varies among languages

A or B and C

• Usually "and" higher than "or"

• Ada doesn't do this
• Usually higher than relational operators

(But not in Pascal: A < 5 or B)

Boolean Expressions
C (and early versions of C++) is the only
popular imperative language without a boolean
type

• 0 means false
• Non-zero means true

So the following are legal Boolean expressions:

8 < 6 < 4 (true)
5 == 5 == 5 (false)

And what about Ruby?

Short Circuiting
Expression evaluation in which the result
can be determined without evaluating all
operands and operators

Examples

if (a != 0 && b/a < 10)  good
if (a != 0 || b++ > 5)  bad

Boolean Expressions
Pascal does not have short circuit Boolean expressions
Ada provides both forms

and/or for non-short circuit
and then/or else for short circuit

C/Java have short circuit Boolean expressions only
&& (and), || (or)

They also have bitwise logical operations that do not
short circuit

& (bitwise and), | (bitwise or), ^ (bitwise xor)

Ternary Operators

C, C++, Java conditional expression
x = a + ((b < c) ? b : c);

Perl/Ruby: 3 – way comparison <=>

–1 if 1st < 2nd 5 <=> 10

0 if 1st = 2nd 5 <=> 5

+1 if 1st > 2nd 5 <=> 1

Assignment Expressions
In the C/Java languages assignment is an
expression
Makes the following possible:

int x, y, z;
x = y = z = 4;
z = 5 + (x = y‐1);
if ((x = y) == 4) { … }

while ((ch = getchar())!=EOF) { … }

