CSIS 4244

Chapter 6

Control Flow: Expressions

. (sequencing
Figure 6.1 Operator precedence levels in Fortran, Pascal, C, and Ada.
The operators at the top of the figure group most tightly.

Copyright © 2009 Elsevier

Operand Evaluation & Side Effects

Another C++ example

// X uses pass by reference
int f(int & x) {

int t = x;

int x

55
int y = x + f(x);

X =X - 5;

return 2 * t;

PL13

Spring 2011

Expressions

Implementation involves fetching
operands and executing operations
Precedence and associativity of
operations are primary design issues

C and C++ have over 50 operators and 15
levels of precedence

Recall syntax directed semantics in BNF
rules for arithmetic expressions

Operand Evaluation & Side Effects

Consider the following C++ example:

int a[20]; // 20 element array
int i = 10;
a[i] = i++;

What value gets stored where???

What if the last statement is changed to:
a[i] = ++i;

or

ali++] = i;

Operand Evaluation & Side Effects

Some optimizing compilers
rearrange/reorder operand evaluation to
generate more efficient object code

Ada does not allow functions to create
side effects (no OUT parameters
allowed)

CSIS 4244

Boolean Expressions

Precedence levels of Boolean operators (and
relational operators) varies among languages

A or B and C

¢ Usually "and" higher than "or"
 Ada doesn't do this

« Usually higher than relational operators
(But not in Pascal: A < 5 or B)

Short Circuiting

Expression evaluation in which the result
can be determined without evaluating all
operands and operators

Examples

if (a != 0 & b/a < 10) = good
if (al!=@ || b++ > 5) = bad

Ternary Operators

C, C++, Java conditional expression
x=a+ ((b<c)?b:c);

Perl/Ruby: 3 - way comparison <=>

-1 if 15t < 2nd 5 <=> 10
0 if 1st=2nd 5<=>5
+1 if 15t > 2nd 5«<=>1

PL13

Spring 2011

Boolean Expressions

C (and early versions of C++) is the only
popular imperative language without a boolean

type
* 0 means false
« Non-zero means true

So the following are legal Boolean expressions:

8<6<4 (true)
5 ==5==05(false)

And what about Ruby?

Boolean Expressions

Pascal does not have short circuit Boolean expressions
Ada provides both forms

and/or for non-short circuit

and then/or else for short circuit
C/Java have short circuit Boolean expressions only

&& (and), |1 (or)
They also have bitwise logical operations that do not
short circuit

& (bitwise and), | (bitwise or), ” (bitwise xor)

Assignment Expressions

In the C/Java languages assignment is an
expression

Makes the following possible:

int x, y, z;

=z = 4;

+ (x = y-1);

if ((x =y) ==4) { .}

while ((ch = getchar())!=EOF) { .. }

