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Chapter 6

Control Flow: Expressions

. (sequencing
Figure 6.1 Operator precedence levels in Fortran, Pascal, C, and Ada.
The operators at the top of the figure group most tightly.
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Operand Evaluation & Side Effects

Another C++ example

// X uses pass by reference
int f(int & x) {

int t = x;

int x

55
int y = x + f(x);

X =X - 5;

return 2 * t;
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Expressions

Implementation involves fetching
operands and executing operations
Precedence and associativity of
operations are primary design issues

C and C++ have over 50 operators and 15
levels of precedence

Recall syntax directed semantics in BNF
rules for arithmetic expressions

Operand Evaluation & Side Effects

Consider the following C++ example:

int a[20]; // 20 element array
int i = 10;
a[i] = i++;

What value gets stored where???

What if the last statement is changed to:
a[i] = ++i;

or

ali++] = i;

Operand Evaluation & Side Effects

Some optimizing compilers
rearrange/reorder operand evaluation to
generate more efficient object code

Ada does not allow functions to create
side effects (no OUT parameters
allowed)
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Boolean Expressions

Precedence levels of Boolean operators (and
relational operators) varies among languages

A or B and C

¢ Usually "and" higher than "or"
 Ada doesn't do this

« Usually higher than relational operators
(But not in Pascal: A < 5 or B)

Short Circuiting

Expression evaluation in which the result
can be determined without evaluating all
operands and operators

Examples

if (a != 0 & b/a < 10) = good
if (al!=@ || b++ > 5) = bad

Ternary Operators

C, C++, Java conditional expression
x=a+ ((b<c)?b:c);

Perl/Ruby: 3 - way comparison <=>

-1 if 15t < 2nd 5 <=> 10
0 if 1st=2nd 5<=>5
+1 if 15t > 2nd 5«<=>1
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Boolean Expressions

C (and early versions of C++) is the only
popular imperative language without a boolean

type
* 0 means false
« Non-zero means true

So the following are legal Boolean expressions:

8<6<4 (true)
5 ==5==05(false)

And what about Ruby?

Boolean Expressions

Pascal does not have short circuit Boolean expressions
Ada provides both forms

and/or for non-short circuit

and then/or else for short circuit
C/Java have short circuit Boolean expressions only

&& (and), |1 (or)
They also have bitwise logical operations that do not
short circuit

& (bitwise and), | (bitwise or), ” (bitwise xor)

Assignment Expressions

In the C/Java languages assignment is an
expression

Makes the following possible:

int x, y, z;

=z = 4;

+ (x = y-1);

if ((x =y) ==4) { .}

while ((ch = getchar())!=EOF) { .. }




