
CSIS 4244 Spring 2011

- 1 -PL11

Chapter 3
(3.1, 3.3)

Informal Semantics:
Names, Bindings and Scope

Informal Semantics

Semantics describes the meaning of a
construct
Formal semantic definitions are precise
but difficult to understand
Informal descriptions of semantics are
common in reference manuals

Names
An abstraction mechanism
Semantics describe the meaning of a name

• Its attributes

Design Issues
• Maximum length
• What characters can be used
• Case sensitivity
• Special words

Names - Design Issues
Length

• Originally 1 character
• Fortran I – 77  6 characters
• COBOL  30 characters
• Fortran 90 & ANSI C  31 characters
• Ada & C++  no limit

But a compiler may limit significance

Most modern languages allow underscore (_)
Case sensitivity

• Prior to 1970 computers couldn't distinguish

Java camelcase example:
ArrayIndexOutOfBoundsException

Special words

Reserved Words
• Cannot be used as a user defined name

Keyword
• Context determines whether it is a special word

Predefined
• Language has a meaning, but can be changed by

the programmer (main in C, …)

Variables
An association between a name and a
memory location
Attributes include:

• Name – How it is referenced
• Address – Memory location (l-value)
• Value – Contents of memory location (r-value)
• Type – Range of acceptable values
• Scope – Where the name can be referenced
• Lifetime – Time period when memory is allocated

CSIS 4244 Spring 2011

- 2 -PL11

Variables Attributes
Type

Determines possible values of a variable and the set of
operations that are defined that type; in the case of
floating point, type also determines the precision

Value
The contents of the location with which the variable is
associated

Abstract memory cell
The physical cell or collection of cells associated with
a variable

Variables (Pascal)
Example

var x : Integer;
x := 20;
x := x + 1;

Attributes of x:

xName
20658

Address
(l-value)

Type = Integer
(how the bits are
interpreted)

Value
(r-value)

Scope (later) Lifetime (later)

00010100

Functions (C++)
Example

int f(int x) {
return 2 * x;

}

Attributes of f:
Signature:

• Name: f
• Parameters: one int passed by value

Return type: int
Body of code

Binding
An association between an entity and an
attribute
Examples:

• Value  Memory cell
• Memory cell  Name
• Name  Type

Binding is a central concept in programming
language semantics

Binding Times
Language definition time

• Reserved words, syntax rules, types, operator symbols
Language implementation time

• Size & bit pattern of floating point, maximum integer,
runtime exception handling

Compile time
• Relative address & type of a variable, high-level constructs

to machine code
Link/Load time

• Relative address for var's & subprograms in separate
modules

• Absolute addresses of global variables
Runtime

• Values of var's, addresses for parameters & local vars

Binding Times
Static – Occurs before runtime and does not
change during program execution

Dynamic – Occurs during program execution and
may change according to language specific rules

Early binding supports efficient implementation
& reliable code (compilers)

Late binding provides flexibility (interpreters)

CSIS 4244 Spring 2011

- 3 -PL11

Declarations
A method for establishing bindings
Attributes bound to names by declarations
include: var, type, constant, function, etc.

Explicit declaration - a statement for declaring the
types of variables

Implicit declaration – a default mechanism for
specifying types of variables (the first appearance
of the variable in the program)

Declarations have an attribute called scope…

Scope of a Declaration
Section of program text where the bindings
established by a declaration are in effect
In block structured languages, scope of a
declaration is limited to the block where it
occurs
Declarations in nested blocks have precedence
over earlier declarations

• This produces a "hole" in the scope of a declaration
• The binding exists, but is hidden from view
• Visibility – Region where a binding applies

Note: Java does NOT use this (declaration in nested
block cannot override a declaration preceding it)

Copyright © 2009 Elsevier, Inc. All rights reserved.

Nested
subroutines
in Pascal

Static Links for Non-local Access

Copyright © 2009 Elsevier, Inc. All rights reserved.

Static & Dynamic Scoping
Static Scoping

• Bindings defined by the structure of a program
• Determined prior to program execution
• Most common scoping method

Dynamic Scoping
• Bindings determined at run time based on the

calling sequence of subprograms
• Complex & rarely used

• One important use - exception handling

Static Scope
To connect a name reference to a variable,
find its declaration

• First look locally (same block)
• If not found try increasingly larger enclosing

scopes

Variables can be “hidden” from a unit by
having a “closer” variable with the same name

CSIS 4244 Spring 2011

- 4 -PL11

Dynamic Scoping

References to variables are connected to
declarations by searching back through
the chain of subprogram calls
• Temporal versus spatial

Static vs. Dynamic

Static Scoping  prints 1

Dynamic Scoping  prints 2

program scopes (input, output);
var a : integer;
procedure first;
begin a := 1; end;
procedure second;

var a : integer;
begin first; end;

begin
a := 2; second; write(a);

end.

Ruby Scope Weirdness
x = 5
for x in 1..4

y = 2 + x
end
puts x, y

for loop
doesn't create
a local scope

[1,2,3].each do |x|
y = x + 1

end
puts x, y

Error - x and y
out of scope

x = nil
y = nil
[1,2,3].each do |x|

y = x + 1
end
puts x, y

Works

Referencing Environment
The collection of all names that are visible
to a statement
Static Scope

• Local variables + visible variables in all of the
enclosing scopes

Dynamic Scope
• Local variables + visible variables in all active

subprograms

Scoping with Namespaces
Used to logically arrange classes, etc. in groups
C# example declaration

namespace MyStuff {
public class MyClass1 {
…

}
public class MyClass2 {
…

}
}

Scoping with Namespaces
C# example client

class Client {
static void main() {
MyStuff.MyClass1 x =

new MyStuff.MyClass1();
MyStuff.MyClass2 x =

new MyStuff.MyClass2();
}

}

CSIS 4244 Spring 2011

- 5 -PL11

Scoping with Namespaces
C# example client

using MyStuff;
Class Client {

static void main() {
MyClass1 x = new MyClass1();
MyClass2 x = new MyClass2();

}
}

Scoping with Namespaces
Namespaces can be used to avoid names clashes
namespace Stuff1 {

public class MyClass { }
}
namespace Stuff2 {

public class MyClass { }
}

class Client {
static void main() {

Stuff1.MyClass x = new Stuff1.MyClass();
Stuff2.MyClass y = new Stuff2.MyClass();

}
}

Scoping with Namespaces
Namespaces can be nested
XML uses namespaces to avoid name clashes in
documents
Java imports are similar to namespaces, but
are directly related to the hierarchy of the file
system containing class files
Namespaces are one of the most confusing
concepts in modern programming languages

