CSIS 4244

Ruby Security

And several advanced
features

A Simple Interpreter

The eval method evaluates (executes)
the code passed to it and returns the
result

while "qg" != x = gets.chomp
puts "=> #{eval(x)}"
end

Read — Eval — Print Loop

Safely Handling Data

Ruby scripts can be made safer by marking all
external data as tainted

Examples
s = "Hi Ruby"
s.tainted? # false
X = 250
x.tainted? # false

al = [s, x]

al.tainted? # false

f = File.open("somefile").readlines.first
f.tainted? # true

a2 = [f, s, x]

a2.tainted? # false

PL10

Spring 2011

Running other Programs

Using the system method to execute the
Windows date command

system "date /t"

or using backticks
“date /t°

Safely Handling Data

All external data is dangerous!
¢ Command line
« External files
« Form fields on a web page
Example:

Suppose the user input to the simple
interpreter was

“del C:*.* /s~

Regular Expressions and
Security

Regular expressions often used to
validate user input

Example: Forms on web pages can be used
for several common attacks

« SQL injection
« Cross site scripting

CSIS 4244

Safely Handling Data

Blocking execution of operating system
commands

while cmd = gets
cmd.untaint if not cmd =~ /[]/
next if cmd.tainted?
puts "=> #{eval(cmd)}"

end

Safe Levels

No checking of the use of externally supplied (tainted) data
0 is performed. This is Ruby's default mode.

Disallow the use of tainted data by potentially dangerous
>=1 operations.

Prohibit the loading of program files from globally writable
>=2 Jocations.

All newly created objects are considered tainted

Partitions the running program in two. Nontainted objects
may not be modified. Typically, this will be used to create a

>= 4 sandbox: the program sets up an environment using a lower
$SAFE level, then resets $SAFE to 4 to prevent subsequent
changes to that environment.

PL10

Spring 2011

Safe Levels

Ruby supports specifying what features
to make available and how it should deal
with tainted data

Safe levels are set by assigning a value to
$SAFE

Safe Levels

$SAFE = 1
cmd = gets
puts "=> #{eval(cmd)}"

Script will terminate with a SecurityError ‘

