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Ruby Security

And several advanced
features

A Simple Interpreter

The eval method evaluates (executes)
the code passed to it and returns the
result

while "qg" != x = gets.chomp
puts "=> #{eval(x)}"
end

Read — Eval — Print Loop

Safely Handling Data

Ruby scripts can be made safer by marking all
external data as tainted

Examples
s = "Hi Ruby"
s.tainted? # false
X = 250
x.tainted? # false

al = [s, x]

al.tainted? # false

f = File.open("somefile").readlines.first
f.tainted? # true

a2 = [f, s, x]

a2.tainted? # false
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Running other Programs

Using the system method to execute the
Windows date command

system "date /t"

or using backticks
“date /t°

Safely Handling Data

All external data is dangerous!
¢ Command line
« External files
« Form fields on a web page
Example:

Suppose the user input to the simple
interpreter was

“del C:\*.* /s~

Regular Expressions and
Security

Regular expressions often used to
validate user input

Example: Forms on web pages can be used
for several common attacks

« SQL injection
« Cross site scripting
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Safely Handling Data

Blocking execution of operating system
commands

while cmd = gets
cmd.untaint if not cmd =~ /[ ]/
next if cmd.tainted?
puts "=> #{eval(cmd)}"

end

Safe Levels

No checking of the use of externally supplied (tainted) data
0 is performed. This is Ruby's default mode.

Disallow the use of tainted data by potentially dangerous
>=1  operations.

Prohibit the loading of program files from globally writable
>=2  Jocations.

All newly created objects are considered tainted

Partitions the running program in two. Nontainted objects
may not be modified. Typically, this will be used to create a

>= 4 sandbox: the program sets up an environment using a lower
$SAFE level, then resets $SAFE to 4 to prevent subsequent
changes to that environment.
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Safe Levels

Ruby supports specifying what features
to make available and how it should deal
with tainted data

Safe levels are set by assigning a value to
$SAFE

Safe Levels

$SAFE = 1
cmd = gets
puts "=> #{eval(cmd)}"

Script will terminate with a SecurityError ‘




