
CSIS 4244 Spring 2011

PL-01 1

CSIS 4244
Programming Language
Concepts

An Introduction

Comprehensive Map

Political

Temperature (January)

Population Density

Time Zones

CSIS 4244 Spring 2011

PL-01 2

Road Map

So What’s the Point?

 The earth has a lot of “standard” features
(rivers, land masses, etc.) which can be
simulated on maps

 Different kinds of maps provide different kinds
of information, but…

 It is necessary to understand the underlying
concepts of maps to effectively use them
 What kind of symbols are allowed & what are the

rules for their use? (syntax)
 What do the symbols mean? (semantics)
 What kind of map is best suited for a particular

purpose? (pragmatics)

CSIS 4244

 This course covers the underlying concepts
of contemporary programming languages

 This is NOT a survey of languages course
 But we will see many examples of how various

languages use the underlying concepts

 This is NOT a programming course
 But there will be short programming assignments

in various languages

What is a programming language?

 A communication interface between human
and machine

 An abstraction of the real world
(user’s view)

 A notation for expressing objects & algorithms
(programmer’s view)

 The set of all syntactically correct programs
(compiler’s view)

Elements of Programming
Languages

 Syntax
 Formal rules for producing grammatically correct

program constructs

 Semantics
 Rules governing the meaning (operational effect)

of syntactically correct program constructs when
translated and executed

 Pragmatics
 What kind of objects (data) a language can manipulate

 What kind of algorithms it can (reasonably) implement

Reasons to Study Programming
Languages Concepts

1. Better able to choose appropriate languages
2. Increased ability to learn new languages
3. Increased capacity to use language concepts

a. Understand obscure features
b. Understand implementation costs
c. Work around limitations

4. Increased ability to design new languages

CSIS 4244 Spring 2011

PL-01 3

Programming Domains

1. Scientific applications

2. Business applications

3. Artificial intelligence

4. Systems programming

5. Scripting languages

6. Special purpose languages

What Makes a Language Successful?

 Easy to learn (BASIC, Pascal, Scheme)

 Easy to express things, easy to use once fluent,
"powerful” (C, Lisp, APL, Algol-68, Perl)

 Easy to implement (BASIC)

 Can compile to fast/small code (Fortran)

 Backing of a powerful sponsor (COBOL, PL/1,
Ada, Visual Basic)

 Wide dissemination at minimal cost (Pascal, Java)

1. Readability
- Factors:

- Overall simplicity
Too many features and multiplicity of features are bad

- Control statements
Data type and structures
Syntax considerations

2. Writeability

- Factors:
- Simplicity
- Support for abstraction
- Expressivity

Language Evaluation Criteria

APL Readability?

 The following APL program produces the
prime numbers in the range from 1 to N:

(2=(+/[2]0=(N)°.|(N)))/N

Evaluation criteria

3. Reliability
- Factors:

- Type checking
- Exception handling
- Aliasing
- Readability and writeability

4. Cost

- Factors
- Programmer training, software creation
- Compilation, Execution
- Poor reliability
- Maintenance

Language Categories
Imperative

 Computation viewed as actions that manipulate memory locations
 Fortran/C/Basic

Functional
 Emphasizes function evaluations
 Lisp/ML/Scheme/F#

Object Oriented
 Hierarchical organization of data, operations applied to objects
 Java/C#/Smalltalk/Ruby

Logic
 Uses “logic” as a means of specifying computation (what vs. how)
 Prolog

Scripting
 "Glue" languages, extension languages, batch processing
 Tcl/Python/Ruby

Concurrent
 Code is executed in parallel. Multiple operations occur “simultaneously”
 Java/Ada/Erlang

CSIS 4244 Spring 2011

PL-01 4

Classification by "Power"

Machine language
 A program instruction is a number

 Programs are “understood” by computer hardware

Assembler language
 Each program instruction is a mnemonic version of the

corresponding machine instruction

High-level language
 Language constructs are designed with the programmer in mind

What is the best language?

What kind of problems do you want to solve?

Business
Cobol, Visual Basic

Artificial Intelligence
Lisp, Prolog

Scientific
Fortran, Mathematica

Real-Time
C, Assembler

Large Systems
C++

Internet
XML, HTML, C#, Javascript, Ruby

Database
SQL

Rapid Prototyping
Tcl/Tk, ASP.NET

Distributed Computing
Erlang

Document Formatting
Postscript, LaTex

Summary

 By learning to critically evaluate existing and future
programming languages, you will be better able to
utilize these languages.

 The ultimate goal is better software
 Correct

 Robust

 Secure

 Consider the current state of software, as stated in a
typical license agreement
 jdk-6-license.txt

