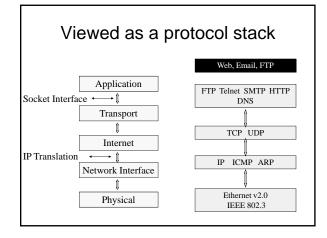


What's Needed in a Packet? Destination/source addresses What's it for (email, web,...?) Packet sequence number Indicates start, middle, or end Actual Data (a part of the message)

How to Communicate?

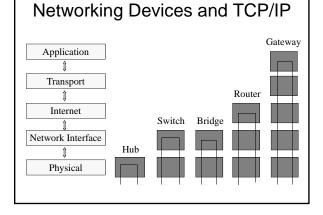

- Need rules that both sides understand Rule = protocol
- For example What should be in a packet What to do if a packet is lost
- · Routers need to decide which way to send

The Internet World

Functional view

- Applications: web, email, ftp
- Reliable transfer of information: end-to-end
- Routing in the network

TCP/IP Layer Summary


- Physical Layer
 - Handles the mechanical and electrical details of the physical medium
 - Physical "MAC" addressing
- Network Interface Layer
 - Prepares frames for the physical network
 - Binding of software to hardware (NIC)

TCP/IP Layer Summary

- Internet Layer
 - IP addressing
 - Route data from source to destination
 - Host-to-host (unreliable) delivery
- Transport Layer
 - Application-to-application delivery
 - Connectionless or connection-oriented

TCP/IP Layer Summary

- Application Layer
 - Software application services for accessing network resources
 - Sockets (specify IP address, port number, protocol)

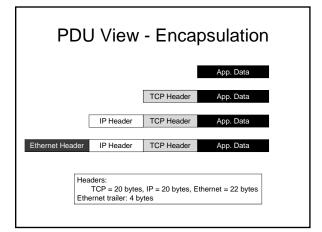
Networking Devices and TCP/IP

- Repeaters & hubs
 - Regenerates electrical signals between two network segments
- Bridges
 - Connect two or more network segments
 Generally with identical network standards
 - Interpret physical addresses
 - Independent of protocol

Networking Devices and TCP/IP

- Switches
 - Functions similar to a bridge but faster
- Routers
 - Interpret logical addresses
 - May change frame format
 - Intelligent and configurable
 - Handle different protocols

Networking Devices and TCP/IP


- · Routers, con't.
 - Can improve security
 - By direction: restricting inbound connections
 - By port/protocol: allow SMTP but not FTP
 - By address: Allow access to WWW and SMTP servers
 - By date/time
 - Can include firewall software for additional security
 - Reduce network congestion
 - Do not route broadcast messages
 - Drop packets if traffic is too much to handle
 - Isolate problems without taking down entire network

Networking Devices and TCP/IP

- · Gateways (high-level)
 - Translate from one networking architecture to another
 Ethernet to Token Ring
 - Convert multiple protocols
 TCP/IP to SNA (IBM)
 - Use physical and logical addressing
 - Interpret data within the protocol
 Unicode-ASCII-EBCDIC
- Note: Routers are commonly called gateways, but do not operate at the high levels shown here

Packets: What's in a name?

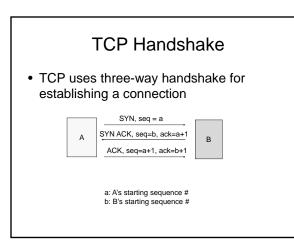
- Generic name: Protocol Data Unit (PDU)
- TCP/UDP segment: (transport layer)
- IP datagram: (internet layer)
- Frame: (e.g. Ethernet frame at MAC layer)
- · Each layer adds its own header

Basic TCP/IP Idea

- Network carries small pieces of information (datagrams)
 - Routes the datagrams
 - Unreliable delivery
- The end host takes care of transport layer
 - Sender: breaks message into pieces
 - Receiver: reassembles
 - Retransmission with acknowledgement

Note

- · Splitting delivery into two parts:
 - Transport layer
 - Network layer
- TCP/IP
 - The end hosts maintain the state (TCP)
 - Routers are stateless (IP)
 - · Don't know anything about connections


Routing Architecture

- Network divided into two parts
 - Intra-domain routing
 RIP, OSPF
 - Inter-domain routingBGP
- Interconnected national and regional backbones (public exchange points)

– Region = AS

TCP

- · Provides reliable end-to-end delivery
- Needs fragmentation & reassembly
- · Needs timers
 - If datagram doesn't reach its destination, need to retransmit (how long to wait?)
- Network may be congested
 - How much more to pump in?
 - Guideline: Bandwidth-delay product T1 (1.5Mbps), delay 25 ms \Rightarrow 4687 bytes
 - Sliding window, RTT, etc.

TCP Algorithms

- · Start slowly
- Increase rate as ACKs are received
- When time out occurs (probably packet loss due to congestion)
 - Be cautious, reduce rate (window size)
 - Increase gradually
 - Additive increase, multiplicative decrease

Why is TCP Important?

- All well known reliable data applications ride on it
 - Email, ftp, telnet, web,...
- Applications have their own application layer protocol

 SMTP, FTP, telnet, HTTP

Example

Client side:

- Makes HTTP request to www.stockton.edu
- · Client opens a TCP connection to server
 - TCP connection established
 - Sends HTTP request
 - HTML file transfer starts from server side
- TCP connection closes

During HTML File Transfer

- · Break file into chunks and give to TCP
- TCP breaks into smaller segments for use by IP
- IP routes datagrams unreliably
- If datagram loss occurs, TCP retransmits starting slowly (does not tell application)

UDP

- Transport Layer protocol for services that don't need reliable transfer
 - RealAudio, VoIP, etc.
- Unregulated
 - During congestion, TCP slows down, UDP may not
 - A big issue for emerging services

Domain Names

- Mnemonic
 - www.stockton.edu www.google.com
- A name can be mapped to either another name or an IP address
 - www.stockton.edu \Rightarrow loki.stockton.edu \Rightarrow 134.210.1.200
- DNS: name to address mapping
 - Supports user applications, e.g. web request first needs to map name to IP address
 - Distributed database
 - If name server is down, can't connect unless you know the IP address

TCP Over Wireless

- TCP was designed for wired networks

 Packet loss to TCP means congestion TCP reduces window size
- But in wireless communication
 - Bit-error is high
 - Hand-off is a connectivity problem
- So TCP over wireless reduces window size when it "sees" a loss due to biterror/hand-off

TCP Over Wireless

- Possible solutions
 - End-to-end
 - To recover from multiple loss, use selective ACK
 - Use explicit loss notification
 - ACK suppression
 - Split-connection
 - Use separate connection for the wireless part
 - Link-layer
 - Hide loss from TCP
 - Forward error correction/link level retransmission