CSIS 4222

Spring 2010

CSIS 4222

Ch 22: Datagram forwarding
Ch 25: UDP
Ch 26: TCP

TCP/IP Design Goals

* Interconnect multiple networks in a
seamless way

» Be able to survive a partial loss of subnet
hardware

» Have flexibility to handle the requirements
of diverse applications

TCP/IP Reference Model

» The protocol used for internetworking
» Based on a view of data communication
as

Processes - Fundamental entities that
communicate

Hosts - Execute processes
Networks - Connection between hosts

TCP/IP Protocol Stack

Application PLAYER 5

Transport LAYER 4

Internet LAYER 3

Network Interface LAYER 2

[T T N |

Physical TAYER 4

TCP/IP Reference Model

Transfer of data to a process requires

— Getting data to the right host where the
process resides

— Getting data to the right process on the host

Protocols provide mechanisms to
distinguish between

» Multiple computers on a network
(Layer 3)

» Multiple applications on a computer
(Layer 4)

» Multiple copies of a single application on
a computer
(Layer 4)

netl4

CSIS 4222

Spring 2010

Internet Packets

» Created and understood only by software

» Called IP datagram
— A self contained packet that carries sufficient
information for routing from source host to
destination host

The IP Datagram

Datagram size is determined by the
application that sends data

* Fixed size header fields
» Payload can be up to 64K octets

Header Data Area (known as a payload area)

Figure 22.1 The general form of an IP datagram with a header followed by a
payload.

IP Semantics

* IP is connectionless
— Each datagram contains identity of
destination
— Each datagram sent/handled independently
* Routes can change at any time
» Motivation: accommodate all possible
networks

Best-Effort Delivery

IP does not guarantee that it will handle all
problems

— Datagram loss

— Corruption of data

— Delayed or out-of-order delivery

— Datagram duplication

Encapsulation Across Multiple
Hops

« Each router in the path from the source to the

destination:

— Unencapsulates incoming datagram from frame

— Processes datagram (determines next hop)

— Encapsulates datagram in outgoing frame
« Datagram may be encapsulated in a different

hardware format at each hop

— Datagram survives entire trip across Internet

— Frame only survives one hop

Maximum Transmission Unit (MTU)

» Every hardware technology specification
defines the maximum size of the frame
data area

» Any datagram encapsulated in a hardware
frame must be smaller than the MTU for
that hardware

netl4

CSIS 4222

Spring 2010

MTU and Heterogeneous Networks

An internet may have networks with different MTUs

Host 1
« Creates datagram for Host 2
* Uses datagram size of 1500 octets
« Transmits datagram across Net 1
Router R
« Receives datagram in Net 1
* Must send datagram through Net 2
+ Uses fragmentation because of smaller MTU

H, R H;
[0 Net 1 (MTU=1500) ———{O——Net 2 (MTU=1000) —{]

Datagram Fragmentation

Performed by routers

« Divides datagram into pieces (fragments)
» Fragments sent separately

 Destination host reassembles fragments

L?H|) . I._(IHz

1 2
Met 1 (MTU=1500) —— Net 2 (MTU=1000) —C—_Net 3 (MTU=1500)

Datagram Fragmentation

Each fragment's IP datagram header
— Identifies original datagram (IDENT)
— Indicate where fragment fits (FRAG OFFSET)

[P Heade[original datagram data area |

[PHar1] data1 | [iPHdr2| data2 [PHdra] datas |

Multiple Fragmentation

» Occurs when fragment is too large for
network MTU
» Suppose MTUs along internet path are
1500 - 1500 - 1000 - 1500 - 575 - 1500
» Fragmentation must occur twice

Fragment Loss

Receiver
— Collects incoming fragments
— Reassembles when all fragments arrive

— Does not know identity of router that did
fragmentation

— Cannot request missing pieces
» Consequence: Loss of one fragment
means loss of entire datagram

Fragment Loss

How does destination identify lost fragment?
— Sets timer with each fragment

— If timer expires before all fragments arrive,
fragment assumed lost

— Datagram dropped

netl4

CSIS 4222

IP vs. Transport

IP provides computer-to-computer

communication

— Unreliable datagram service from machine-to-
machine (no acknowledgement from receiver)

Transport protocols provide application-to-

application communication

— Needs extended addressing mechanism to
identify applications

Spring 2010

Transport Protocol Functionality

+ Identify sending and receiving applications
» Optionally provides

— Reliability

— Flow control

— Congestion control
» Two main transport protocols

— Transmission Control Protocol (TCP)

— User Datagram Protocol (UDP)

User Datagram Protocol (UDP)

Provides unreliable transfer of
independent messages that requires
minimal

— Overhead, Computation, Communication
Same best-effort delivery as IP

UDP Details

» Connectionless service paradigm

» Messages encapsulated in IP datagrams
» UDP header identifies

— Sending application

— Receiving application

— Message length

— Checksum

UDP Encapsulation

[UDP Herr| UDP Payload |

[1P Header | IP Payload |

Frame He:u:ler‘ Frame Payload |

Figure 25.3 The encapsulation of a UDP message in an IP datagram.

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved

netl4

UDP is Connectionless

An application using UDP does not need
to pre-establish communication before
sending data

—can generate and send data at any time
UDP does not maintain state
UDP does not use control messages

— communication consists only of the data
messages themselves

UDP has very low overhead

CSIS 4222

Message-Oriented Interface

» Each time an application requests that
UDP send data

— UDP does not divide a message into multiple
packets

— UDP does not combine messages for delivery
» Consequences

— Positive: each message will be exactly the
same as was transmitted

— Negative: each UDP message must fit into a
single IP datagram

Spring 2010

Message-Oriented Interface

« |P datagram size forms an absolute limit
on the size of UDP message

« If an application sends extremely small
messages

— datagrams will have a large ratio of header
octets to data octets

« If an application sends extremely large
messages

— datagrams may be larger than the network
MTU and will be fragmented by IP

Identifying an Application

Multiplexing/demultiplexing

— Multiple streams of data are sent over a single
connection

— Must identify sender and receiver
unambiguously

— Each application is assigned a unique integer
(protocol port number)

Protocol Ports

Server
— Always uses same port number
(Generally uses lower port numbers)
Client
— Obtains unused port from protocol software
(Generally uses higher port numbers)

Protocol Port Example

« Domain name server application uses port 53
« Application using DNS obtains port 1045
« UDP datagram sent from application to DNS
server has
— Source port number 1045
— Destination port number 53
* When DNS server replies, UDP datagram has
— Source port number 53
— Destination port number 1045

netl4

TCP Service

» Connection Oriented

— An application must first request a connection
to a destination

» Stream Interface

— Application sends a continuous sequence of
octets (data not grouped into messages)

» Complete Reliability

— TCP guarantees that the data sent across a
connection will be delivered completely and in
order

CSIS 4222

Spring 2010

TCP on one host uses IP to communicate
with TCP on another host

communicaion system
Host A as viewed by TCP Hoet B
appl. - appl.
TCP TCP

1P router L
net iface. P] net iface.
et iface. |
net 1 net 2

A Contradiction?

IP offers best-effort (unreliable) delivery
TCP uses IP

TCP provides completely reliable transfer
How is this possible?

Reliable Data Transmission

Positive acknowledgment
— Receiver returns short message (ACK) when
data arrives
Retransmission
— Sender starts timer whenever data is
transmitted
— If timer expires before acknowledgment
arrives, sender retransmits the same data

Retransmission

Events at Host 1 Events at Host 2

send message 1 ——_
——m— recelve message 1
_ |- sendack 1
receive ack 1 —fa—
send message 2 |
—={— receive message 2
] sendack 2
receive ack 2 —fa——
send message 3 —|—__

retransmission timer expires -]
retransmit message 3 | _

w1 receive message 3
—1— send ack 3

e

TCP Waiting Time

Time for acknowledgment to arrive
depends on

— Distance to destination

— Current traffic conditions

— Traffic conditions change rapidly

The Key to TCP’s Success:
Adaptive Retransmission

— Keep estimate of round trip time (RTT) on
each connection

— Use current estimate to set retransmission
timer

netl4

CSIS 4222

Estimating RTT

» For each segment, its RTT is the amount
of time

—from when the segment is sent (passed to IP)
—until an ACK is received
e Can vary from segment to segment

* Maintain an estimated (weighted average)
RTT

Spring 2010

Adaptive Retransmission

est |

— est |
est 2
—— est 2

1l
T

A
timeout
LI packet lost

timeout | cker lost

Adaptive Retransmission

As it sends data packets and receives ACKs

— TCP generates a sequence of round-trip
estimates

— It uses a statistical function to produce a
weighted average

— TCP keeps an estimate of the variance

— It uses a linear combination of the estimated
mean and variance to compute estimated
time:

Timeout = EStRTT + n x variance

« The sender attaches a sequence number to

* The receiver stores the sequence number of the

« The receiver examines the sequence number to

« If the packet has already been delivered or the

Duplicates and Out-of-Order Delivery

each packet

last packet received in order and a list of
additional packets that arrived out of order

determine how the packet should be handled
sequence number matches one of the packets

waiting on the list the software discards the new
copy

Replay

» Very long delays can lead to replay errors

» A packet from an earlier communication
might be accepted and the correct packet
discarded as a duplicate

» To prevent replays, protocols mark each
session with a unique ID and require this ID
in each packet

» The protocol discards any arriving packet
that contains an incorrect ID

» Necessary to prevent a fast computer from

netl4

Flow Control

sending so much data that it overruns a
slower receiver

Simplest form of flow control is stop-and-go
—a sender waits after transmitting each packet

—when the receiver is ready for another packet, it
sends a control message (like ACK)

—results in very low throughput

A better flow control technique is sliding
window

CSIS 4222

Flow Control to Data Overrun

host 1 host 2 host 1 host 2

send

packet ~ send

Sfour
=|_send packets
ack

send
| four
acks

411

send _ le
packet =
done —|=

send _fe - ack

packet =

send |w - ack

packet ~

" ack
done —{=

(a) (b)

Figure 26.3 Comparison of transmission using (a) stop-and-go. and (b) shd-
ing window.

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Spring 2010

TCP Flow Control

Receiver

— Advertises available buffer space (window)

Each acknowledgment carries new window
information

— Interpretation: | have received octets up
through X, and can take Y more octets
Sender

— Can send up to entire window size before
ACK arrives

Buffers, Flow Control, and Windows

» Window is the buffer space available at
any time A TCP window is measured in
octets

« When a connection is established each
end of the connection allocates a buffer to
hold incoming data and sends the size of
the buffer to the other end

» As data arrives receiving TCP sends
ACKs, which specify the remaining buffer
size

Window Advertisement

Sender Events Recelver Events
| advertise window=2500

send data octets 1-1000 -]
send data octets 1001-2000 |
send data octets 2001-2500 —=1 ack up 1o 1000, window=1500
— ack up to 2000, window=500
receive ack for 1000 — 1~ ack up to 2500, window=0
receive ack for 2000 —fa—
receive ack for 2500 —fa—"

|- application reads 2000 octets
| ack up to 2500, window=2000

send data octets 2501-3500 —ta—"

send data octets 3501-4500
~—s|- ack up to 3500, window=1000

<" ack up to 4500, window=0

receive ack for 3500 —fa——__—

receive ack for 4500 —{a— |- spplication reads 1000 octets

__ |- ack up to 4500, window=1000

receive ack for 4500 —a——

Congestion Control

« Excessive traffic can cause packet loss
— Transport protocols respond with retransmission
— Excessive retransmission can cause congestion collapse
« TCP interprets packet loss as an indicator of
congestion
¢ Sender uses TCP congestion control and slows
transmission of packets
— Sends single packet

— If acknowledgment returns without loss, sends two
packets

— When TCP sends one-half window size, rate of increase
slows

« Many variations exist

netl4

Techniques to Avoid Congestion

* Using delay and loss to estimate congestion
is reasonable in the Internet because:
— Modern network hardware is very reliable
— Most delay and loss is from congestion

» The appropriate response to congestion

— Reducing the rate at which packets are being
transmitted

— Sliding window protocols can achieve the effect
of reducing the rate by temporarily reducing the
window size

CSIS 4222

Connection Startup and Shutdown

» Connection startup
— Must be reliable
» Connection shutdown
— Must be graceful (guarantee delivery of all data after
endpoint shutdown)
« This is difficult!
— Segments can be lost, duplicated, delayed, delivered
out of order
— Either side can crash
— Either side can reboot

Spring 2010

Three-way Handshake

Technique used by TCP for reliable connection
establishment and termination

Example: Client initiates connection to server:

1. Client sends special TCP segment with SYN =1,
and a random initial sequence number

2. Server allocates TCP buffers and sends a
connection-granted segment, with SYN = 1, ACK
= client seqNum + 1, and a random sequence
number

3. Client allocates TCP buffers and sends
acknowledgement to server

3-way Handshake - Connection

Client host Server host
connect() accept()

SYN <
W

netl4

3-way Handshake - Shutdown

Client host Server host
close()

FIN =
W‘
Inform app.
ACK =¥+

oK =x+l App. closes

=y, A
pn=1s y connection
ACK = 4
Time

