
CSIS 4222 Spring 2010

net14 1

CSIS 4222

Ch 22: Datagram forwarding
Ch 25: UDP
Ch 26: TCP

TCP/IP Design Goals

• Interconnect multiple networks in a 
seamless way

• Be able to survive a partial loss of subnet 
hardware

• Have flexibility to handle the requirements 
of diverse applications

TCP/IP Reference Model

• The protocol used for internetworking
• Based on a view of data communication 

as
Processes - Fundamental entities that 
communicate
Hosts - Execute processes 
Networks - Connection between hosts

TCP/IP Protocol Stack

TCP/IP Reference Model

Transfer of data to a process requires
– Getting data to the right host where the 

process resides
– Getting data to the right process on the host

Protocols provide mechanisms to 
distinguish between

• Multiple computers on a network 
(Layer 3)

• Multiple applications on a computer 
(Layer 4)

• Multiple copies of a single application on 
a computer 
(Layer 4)



CSIS 4222 Spring 2010

net14 2

Internet Packets

• Created and understood only by software
• Called IP datagram

– A self contained packet that carries sufficient 
information for routing from source host to 
destination host

The IP Datagram    

Datagram size is determined by the 
application that sends data

• Fixed size header fields
• Payload can be up to 64K octets

IP Semantics

• IP is connectionless
– Each datagram contains identity of 

destination
– Each datagram sent/handled independently

• Routes can change at any time
• Motivation: accommodate all possible 

networks

Best-Effort Delivery

IP does not guarantee that it will handle all 
problems
– Datagram loss
– Corruption of data
– Delayed or out-of-order delivery 
– Datagram duplication

Encapsulation Across Multiple 
Hops

• Each router in the path from the source to the 
destination: 
– Unencapsulates incoming datagram from frame 
– Processes datagram (determines next hop)
– Encapsulates datagram in outgoing frame 

• Datagram may be encapsulated in a different 
hardware format at each hop 
– Datagram survives entire trip across Internet
– Frame only survives one hop

Maximum Transmission Unit (MTU)

• Every hardware technology specification 
defines the maximum size of the frame 
data area 

• Any datagram encapsulated in a hardware 
frame must be smaller than the MTU for 
that hardware 



CSIS 4222 Spring 2010

net14 3

MTU and Heterogeneous Networks

An internet may have networks with different MTUs
Host 1

• Creates datagram for Host 2

• Uses datagram size of 1500 octets
• Transmits datagram across Net 1

Router R
• Receives datagram in Net 1

• Must send datagram through Net 2
• Uses fragmentation because of smaller MTU

Datagram Fragmentation

• Performed by routers
• Divides datagram into pieces (fragments)

• Fragments sent separately
• Destination host reassembles fragments

Datagram Fragmentation

Each fragment's IP datagram header
– Identifies original datagram (IDENT)
– Indicate where fragment fits (FRAG OFFSET)

Multiple Fragmentation

• Occurs when fragment is too large for 
network MTU

• Suppose MTUs along internet path are
1500 → 1500 → 1000 → 1500 → 575 → 1500

• Fragmentation must occur twice

Fragment Loss

Receiver
– Collects incoming fragments
– Reassembles when all fragments arrive
– Does not know identity of router that did 

fragmentation
– Cannot request missing pieces

• Consequence: Loss of one fragment 
means loss of entire datagram

Fragment Loss

How does destination identify lost fragment? 
– Sets timer with each fragment 
– If timer expires before all fragments arrive, 

fragment assumed lost 
– Datagram dropped 



CSIS 4222 Spring 2010

net14 4

IP vs. Transport

IP provides computer-to-computer 
communication
– Unreliable datagram service from machine-to-

machine (no acknowledgement from receiver) 

Transport protocols provide application-to-
application communication
– Needs extended addressing mechanism to 

identify applications

Transport Protocol Functionality

• Identify sending and receiving applications
• Optionally provides

– Reliability
– Flow control
– Congestion control

• Two main transport protocols
– Transmission Control Protocol (TCP)
– User Datagram Protocol (UDP)

User Datagram Protocol (UDP)

Provides unreliable transfer of 
independent messages that requires 
minimal
– Overhead, Computation, Communication
Same best-effort delivery as IP

UDP Details

• Connectionless service paradigm
• Messages encapsulated in IP datagrams

• UDP header identifies
– Sending application
– Receiving application
– Message length
– Checksum

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

UDP Encapsulation UDP is Connectionless

• An application using UDP does not need 
to pre-establish communication before 
sending data
– can generate and send data at any time

• UDP does not maintain state
• UDP does not use control messages

– communication consists only of the data 
messages themselves

• UDP has very low overhead



CSIS 4222 Spring 2010

net14 5

Message-Oriented Interface      

• Each time an application requests that 
UDP send data
– UDP does not divide a message into multiple 

packets
– UDP does not combine messages for delivery 

• Consequences
– Positive: each message will be exactly the 

same as was transmitted 
– Negative: each UDP message must fit into a 

single IP datagram

Message-Oriented Interface      

• IP datagram size forms an absolute limit 
on the size of UDP message 

• If an application sends extremely small 
messages
– datagrams will have a large ratio of header 

octets to data octets

• If an application sends extremely large 
messages
– datagrams may be larger than the network 

MTU and will be fragmented by IP

Identifying an Application

Multiplexing/demultiplexing
– Multiple streams of data are sent over a single 

connection
– Must identify sender and receiver 

unambiguously
– Each application is assigned a unique integer 

(protocol port number)

Protocol Ports

Server
– Always uses same port number

(Generally uses lower port numbers)

Client
– Obtains unused port from protocol software

(Generally uses higher port numbers)

Protocol Port Example

• Domain name server application uses port 53
• Application using DNS obtains port 1045
• UDP datagram sent from application to DNS 

server has
– Source port number 1045
– Destination port number 53

• When DNS server replies, UDP datagram has
– Source port number 53
– Destination port number 1045

TCP Service
• Connection Oriented

– An application must first request a connection 
to a destination

• Stream Interface
– Application sends a continuous sequence of 

octets (data not grouped into messages)

• Complete Reliability
– TCP guarantees that the data sent across a 

connection will be delivered completely and in 
order



CSIS 4222 Spring 2010

net14 6

TCP on one host uses IP to communicate 
with TCP on another host

A Contradiction?

• IP offers best-effort (unreliable) delivery
• TCP uses IP
• TCP provides completely reliable transfer
• How is this possible?

Reliable Data Transmission

Positive acknowledgment
– Receiver returns short message (ACK) when 

data arrives

Retransmission
– Sender starts timer whenever data is 

transmitted
– If timer expires before acknowledgment 

arrives, sender retransmits the same data

Retransmission

TCP Waiting Time

Time for acknowledgment to arrive 
depends on
– Distance to destination
– Current traffic conditions
– Traffic conditions change rapidly

The Key to TCP’s Success: 
Adaptive Retransmission

– Keep estimate of round trip time (RTT) on 
each connection

– Use current estimate to set retransmission 
timer



CSIS 4222 Spring 2010

net14 7

Estimating RTT

• For each segment, its RTT is the amount 
of time 
– from when the segment is sent (passed to IP) 
– until an ACK is received

• Can vary from segment to segment
• Maintain an estimated (weighted average) 

RTT

Adaptive Retransmission

Adaptive Retransmission    

As it sends data packets and receives ACKs
– TCP generates a sequence of round-trip 

estimates
– It uses a statistical function to produce a 

weighted average
– TCP keeps an estimate of the variance
– It uses a linear combination of the estimated 

mean and variance to compute estimated 
time:

Timeout = EstRTT + n × variance

Duplicates and Out-of-Order Delivery

• The sender attaches a sequence number to 
each packet

• The receiver stores the sequence number of the 
last packet received in order and a list of 
additional packets that arrived out of order

• The receiver examines the sequence number to 
determine how the packet should be handled

• If the packet has already been delivered or the 
sequence number matches one of the packets 
waiting on the list the software discards the new 
copy

Replay

• Very long delays can lead to replay errors 
• A packet from an earlier communication 

might be accepted and the correct packet 
discarded as a duplicate

• To prevent replays, protocols mark each 
session with a unique ID and require this ID 
in each packet

• The protocol discards any arriving packet 
that contains an incorrect ID

Flow Control

• Necessary to prevent a fast computer from 
sending so much data that it overruns a 
slower receiver

• Simplest form of flow control is stop-and-go  
– a sender waits after transmitting each packet
– when the receiver is ready for another packet, it 

sends a control message (like ACK)
– results in very low throughput

• A better flow control technique is sliding 
window



CSIS 4222 Spring 2010

net14 8

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

Flow Control to Data Overrun
TCP Flow Control

Receiver
– Advertises available buffer space (window)

Each acknowledgment carries new window 
information

– Interpretation: I have received octets up 
through X, and can take Y more octets

Sender
– Can send up to entire window size before 

ACK arrives

Buffers, Flow Control, and Windows

• Window is the buffer space available at 
any time A TCP window is measured in 
octets

• When a connection is established each 
end of the connection allocates a buffer to 
hold incoming data and sends the size of 
the buffer to the other end

• As data arrives receiving TCP sends 
ACKs, which specify the remaining buffer 
size

Window Advertisement

Congestion Control
• Excessive traffic can cause packet loss 

– Transport protocols respond with retransmission 
– Excessive retransmission can cause congestion collapse

• TCP interprets packet loss as an indicator of 
congestion 

• Sender uses TCP congestion control and slows 
transmission of packets 
– Sends single packet 
– If acknowledgment returns without loss, sends two 

packets 
– When TCP sends one-half window size, rate of increase 

slows 

• Many variations exist

Techniques to Avoid Congestion

• Using delay and loss to estimate congestion 
is reasonable in the Internet because:
– Modern network hardware is very reliable
– Most delay and loss is from congestion

• The appropriate response to congestion 
– Reducing the rate at which packets are being 

transmitted
– Sliding window protocols can achieve the effect 

of reducing the rate by temporarily reducing the 
window size



CSIS 4222 Spring 2010

net14 9

Connection Startup and Shutdown

• Connection startup
– Must be reliable

• Connection shutdown
– Must be graceful (guarantee delivery of all data after 

endpoint shutdown)

• This is difficult!
– Segments can be lost, duplicated, delayed, delivered 

out of order
– Either side can crash
– Either side can reboot

Three-way Handshake
Technique used by TCP for reliable connection 
establishment and termination 
Example: Client initiates connection to server:

1. Client sends special TCP segment with SYN = 1, 
and a random initial sequence number

2. Server allocates TCP buffers and sends a 
connection-granted segment, with SYN = 1, ACK 
= client seqNum + 1, and a random sequence 
number

3. Client allocates TCP buffers and sends 
acknowledgement to server

3-way Handshake - Connection

Client host Server host
connect() accept()

Time Time

SYN = 1, seq = x

SYN = 1, seq = y, ACK = x+1

SYN = 0, seq = x+1, ACK = y+1

3-way Handshake - Shutdown
Client host Server host

close()

FIN = 1, seq = x

ACK = x+1

ACK = y+1

Time

FIN = 1, seq = y, ACK = x+1

Inform app.

App. closes
connection


