CSIS 4222

Achieving Universal Service

Routers must agree on how to forward information

- Frame formats and addressing schemes used by the underlying networks can differ
- Protocol software overcome the differences to make universal service possible among different network technologies

A Virtual Network

Internetworking provides the appearance of a single seamless communication system Software hides the details of

- physical network connections
- physical addresses
- routing information

- Removes the header for that layer and performs othe processing
- Passes the resulting message to the next higher layer

TCP/IP Reference Model The protocol used for internetworking

Based on a view of data communication as Processes - Fundamental entities that communicate Hosts - Execute processes (multiple-

simultaneous processes possible) Networks - Connection between hosts

TCP/IP Reference Model

Transferring data to a process requires

- 1. Getting data to the host where the process resides
- 2. Getting data to the correct process on the host

TCP/IP Design Goals

- Interconnect multiple heterogeneous networks in a seamless way
- Be able to survive a partial loss of subnet hardware
- · Flexibility to handle the requirements of diverse applications

Internet Protocol Stack 5. Application: supports network apps – FTP, SMTP, HTTP 4. Transport: data transfer between Application applications - TCP, UDP Transport 3. Internet: routing of datagrams from Internet source host to destination host - IP, routing protocols Network 2. Network interface: data transfer between neighboring network Physical elements - Ethernet, MAC addressing

1. Physical: bits "on the wire"

Host Computers, Routers, and **Protocol Layers**

Hosts connect to an internet and run applications

• Cell phone, PC, server, mainframe

TCP/IP protocols make it possible for any pair of hosts to communicate Both hosts and routers need TCP/IP

protocol software

· But routers do not use protocols from all layers

Service Paradigms Connection-oriented (like telephone system) Before data flows, two hosts and intervening routers establish a virtual connection - Connection is maintained as long as they have data to exchange

Connectionless (like postal system)

- Endpoint puts data to send into a *packet* and hands it to the network for delivery
- Different packets between a source-destination pair may take different paths

No choice: The network provides one or the other - VC used in ATM, frame-relay, X.25

- Connectionless used in today's Internet

Connection-Oriented Service

- One endpoint requests a connection & the other agrees
- Computers exchange data through established connection
- Typically uses a stream interface
 - Source delivers a stream of data to network
 - Network breaks the stream into packets for delivery
- Like telephone, connection remains in place even while no data transmitted
- One endpoint requests to break the connection when transmission is complete

Connectionless Service

- No connection agreement necessary
- Source of data adds destination information and delivers to the network
- Network delivers each data item individually

TCP/IP Support

TCP/IP includes protocols for

- An unreliable connectionless delivery service
- A reliable connection-oriented service
 that uses the underlying connectionless service
- This design forms the basis for all Internet communication

How does a packet cross the Internet?

Source host creates a packet

- Puts destination address in the packet header
- Sends the packet to a nearby router

Router receives a packet

- Uses the destination address to select the next router on the path
- Forwards the packet

Eventually, the packet reaches a router that can deliver the packet to its final destination

What format is used for Internet packets?

IP defines a *universal virtual* packet format that is independent of the hardware frame formats

- Virtual

- Format is not tied directly to any hardware
- The underlying hardware does not understand or recognize an Internet packet
- Universal
 - Each host and router in the Internet contains protocol software that recognizes Internet packets

Internet Packets

- · Created and understood by software
- Contains sender and destination IP addresses
- A self contained packet that carries sufficient information for routing from source *host* to destination *host*

Best-Effort Delivery

IP does not guarantee that it will handle all problems

- Datagram duplication
- Delayed or out-of-order delivery
- Corruption of data
- Datagram loss
- IP makes a best-effort to deliver each datagram

IP Datagram Forwarding

Is performed by routers

- Table-driven
- Uses IP addresses
- Table entry specifies next hopNext-hop is a router or the destination

Next-hop Forwarding

Each router along the path

- receives the datagram
- extracts the destination address from the header
- uses the destination address to determine a next hop
- then forwards the datagram to the next hop
 either the final destination or another router

Longest Prefix Match

Suppose a router's forwarding table contains entries for network prefixes:

- 128.10.0.0/16 and 128.10.2.0/24
- What happens if a datagram destination is 128.10.2.3?
- Which entry should be used?
- Internet forwarding uses a longest prefix match
- Choose the entry for 128.10.2.0/24

Routing Table Size

Since each destination in a routing table corresponds to a network, the number of entries is proportional to the number of networks in an internet.

Datagram Transmission

- Datagram sent across conventional network
 - From source host to router
 - Between intermediate routers
 - From final router to destination host
- Network hardware does not recognize
 - Datagram format
 - IP addresses

Datagram Transmission and Frames

- Internet layer (IP)
 - Constructs datagram
 - Determines next hop
 - Hands to network interface layer
- Network interface layer
 - Binds next hop address to hardware address
 - Prepares datagram for transmission
- But hardware frame doesn't understand IP, so how is datagram transmitted?

Encapsulation

- Network interface layer *encapsulates* IP datagram as the data area in a hardware frame
 - Hardware ignores IP datagram format
- Standards define data type for IP datagram, ARP, etc.
- Receiving protocol stack interprets data area based on frame type

Encapsulation Across Multiple Hops

- Each router in the path from the source to the destination:
 - Unencapsulates incoming datagram from frame
 - Processes datagram determines next hop
 - Encapsulates datagram in outgoing frame
- Datagram may be encapsulated in different hardware format at each hop
 - Datagram survives entire trip across Internet
 - Frame only survives one hop