

Isochronous Transmission Designed to provide steady bit flow for multimedia applications

- variations in delay known as jitter can disrupt reception (cause pops or clicks in audio/make video freeze for a short time)
- Isochronous network is designed to accept and send data at a fixed rate, R
- Network interface passes data to the network for transmission at exactly *R* bits per second

twisted pair

Optical and RF Modems

- Modems are also used with other media
 Radio Frequency (RF) transmission
 - Optical fibers
- Modems can use entirely different media, but the principle remains the same
 - at the sending end, a modem modulates a carrier
 - at the receiving end, data is extracted from the modulated carrier

Carrier Sense Multiple Access (CSMA)

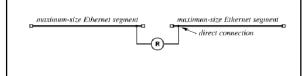
- Ethernet uses cable as a shared medium Nothing controls access to the medium
- CSMA: listen before transmitting
 - If cable sensed idle: transmit a frame
 - If cable sensed busy, wait

Collision Detection CSMA/CD

- A collision can occur if two stations find the cable idle, and both start transmitting
- If adapter detects another transmission while transmitting, it aborts and sends jam signal
- Each adapter waits a random time and retransmits
 - If another collision occurs, they double the maximum time and try again (binary exponential backoff)

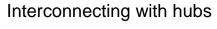
Hubs

- Bits coming from one link are repeated on all other links
- No frame buffering
- No collision detection
- Minimal network management functionality

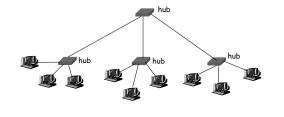

Extending LANs

Recall

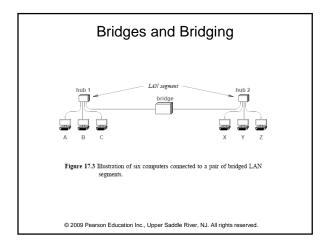
- Each LAN technology has distance, speed, and cost limitations
- Typical LAN technology can span, at most, a few hundred meters

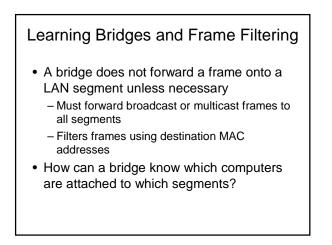

Repeaters copy signals from one segment to the other

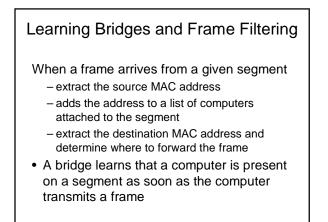
- One repeater can effectively double the length of a LAN segment
- But it also propagates noise and collisions

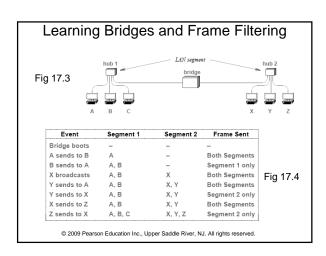


Spring 2010

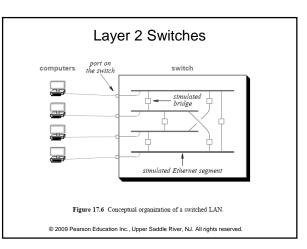

CSIS 4222




- A backbone hub interconnects LAN segments
- Extends max distance between nodes
- But individual segment collision domains become one large collision domain



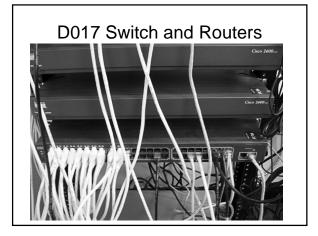
Bridging in Other Devices


- A DSL or cable modem provides a form of bridging:
 - Provides an Ethernet connection at a subscriber's residence
 - Transfers Ethernet packets between the subscriber's location and the provider's network
- Some wireless technologies also use a form of bridging to transfer frames from a mobile device to a provider's network

Switches

- · Has multiple ports like a hub
- Logically similar to a bridge
 - Operates on frames
 - Understands MAC addresses
 - Only forwards when necessary
- Permits separate pairs of computers to communicate at the same time

Ethernet (Layer 2) Switch


- Stores and forwards Ethernet frames
 - Examines frame header and selectively forwards frame based on destination MAC address
 - When a frame is to be forwarded on a segment, it does collision detection
- Transparent
 - Hosts are unaware of presence of switches
- Plug-and-play, self-learning
 - Switches do not need to be configured

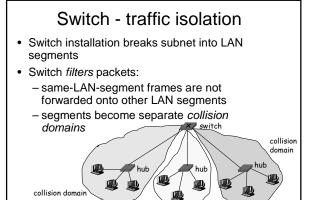
VLAN Switches

Virtual Local Area Network (VLAN) switches

- Allow a manager to configure a single switch to emulate multiple, independent switches
- Specify a set of ports to be on virtual LAN 1, another set of ports to be on virtual LAN 2, and so on
- Once configured, a VLAN switch makes it appear that there are multiple switches

Filtering/Forwarding

When a switch receives a frame:


index into switch table using MAC dest address if entry found for destination

if dest is on segment from which frame arrived drop the frame

else

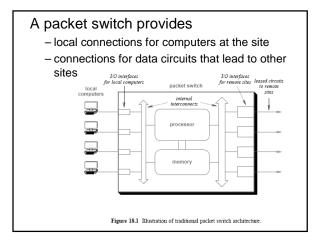
forward the frame on interface indicated else flood

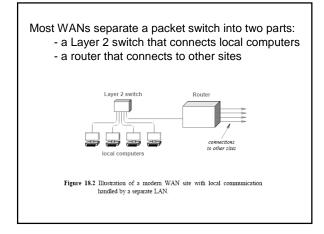
forward on all but the interface on which the frame arrived

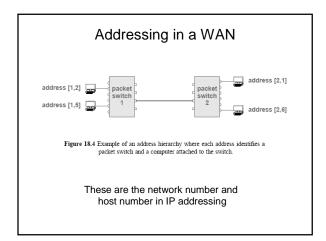
collision domain

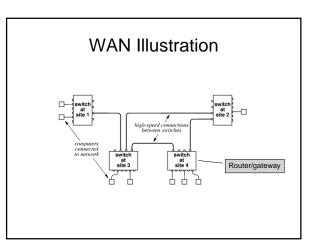
Introduction to WAN Technologies

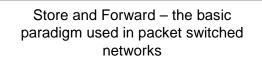
- LANs can be extended but

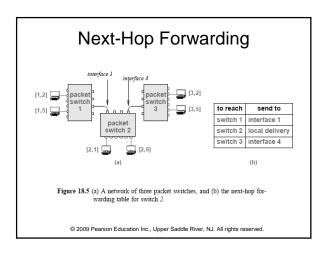

 not arbitrarily far and
 - not to handle arbitrarily many computers
- WAN must be *scalable* to long distances **and** many computers


Packet Switches - the basic building blocks for long distance data connections


To span long distances or many computers, a network must replace *shared medium* with *packet switches*


Packet switch: A small computer with network interfaces, memory and software dedicated to packet switching function

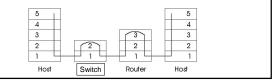

Each switch moves an *entire packet* from one connection to another



Packet

- Sent from source computer
- Travels switch-to-switch
- Delivered to destination

Switch


- "Stores" packet in memory
- Examines packet's destination address
- "Forwards" packet toward destination

Switches vs. Routers

- Both are store-and-forward devices

 routers: internet layer devices (examine internet layer headers)
 - switches are network interface layer devices
- Routers maintain routing tables (IP), implement routing algorithms
- Switches maintain switch tables (MAC), implement filtering, learning algorithms

