# **CSIS 4222**

Transmission Media and Error Detection What's the most cost effective way to transmit large quantities of data?

#### **Federal Express!**

One of the most common ways of transporting information is via magnetic tape or removable media (DVD, etc.)

## Magnetic Media

- Industry standard tape holds 200 GB of data (now some can hold up to 800 GB)
- A 20" × 20" × 20" box can hold 1000 tapes
   200 terabytes total (1600 terabits)
- Fed Ex can deliver this box anywhere in the USA in 24 hrs
- The effective bandwidth of this transmission is 1600 Tb/86400 sec = 19 Gbps
- For a destination 1 hour away it increases to over 400 Gbps!!!

"Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway."

- Andrew Tanenbaum

- 1000 tapes bought in bulk & recycled  $\approx$  \$4000
- Shipping ≈ \$1000
- Total data shipped = 200 TB
- Cost < 3¢ / GB
- No network on earth can beat this!

## Magnetic Media - downside?

- Batch oriented high delay in accessing data.
- It takes minutes or hours or days to physically transport the cassettes from one location to another

## **Transmission Media**

- Communications requires moving energy (usually light or electricity)
- Signal: A disturbance in a transmission medium
- *Propagation:* Movement of a signal along a transmission medium
- The speed of light is the maximum speed a signal can travel.

3 ×10<sup>8</sup> m/sec in a vacuum 2 ×10<sup>8</sup> m/sec in copper wire or glass

# **Transmission Media**

Two broad classes:

- Type of path: follow an exact path, e.g. a wire have no specific path, e.g. radio transmission
- Form of energy: electrical energy for wires, radio transmission for wireless, light for optical fiber

# **Physical Media**

#### Guided

- Copper wire (cheapest)
   Twisted pair (such as telephone wire)
   Coaxial cable
- Optical fiber (fastest)
   Flexible
  - Light "stays in"

#### Unguided

Air / space
 Electromagnetic transmission

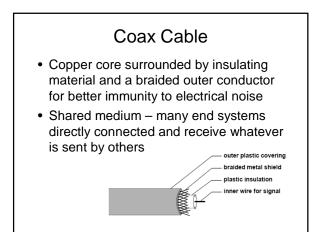
## Considerations for Media

- Cost
- Ease of installation and repair
- Attenuation
- Distortion/Interference
- Security
- Ability to cross public land
- Mobility

## **Twisted Pair**

- Two insulated copper wires twisted together in a helix to reduce interference from other pairs
- Each pair acts as a single communication link
- Multiple pairs bundled into a cable

# Twisted Pair


- Carries analog signals
- Analog signals can closely approximate square waves representing bits, so we also think of them as carrying digital data
- Data transmission rate is determined by wire thickness and length

## **Twisted Pair**

- · Good, low-cost communication
- Many sites already have twisted pair installed in offices -- existing phone lines
- Unshielded twisted pair (UTP) is extensively used in LANs
- · Susceptible to interference and noise
- Spans several kilometers sharp attenuation

# Categories of Twisted Pair Cable

| Category | Description                                                                                                   | Data Rate<br>(in Mbps) |
|----------|---------------------------------------------------------------------------------------------------------------|------------------------|
| CAT 1    | Unshielded twisted pair used for telephones                                                                   | < 0.1                  |
| CAT 2    | Unshielded twisted pair used for T1 data                                                                      | 2                      |
| CAT 3    | Improved CAT2 used for computer networks                                                                      | 10                     |
| CAT 4    | Improved CAT3 used for Token Ring networks                                                                    | 20                     |
| CAT 5    | Unshielded twisted pair used for networks                                                                     | 100                    |
| CAT 5E   | Extended CAT5 for more noise immunity                                                                         | 125                    |
| CAT 6    | Unshielded twisted pair tested for 200 Mbps                                                                   | 200                    |
| CAT 7    | Shielded twisted pair with a foil shield<br>around the entire cable plus a shield around<br>each twisted pair | 600                    |



# Coax Cable

#### Baseband:

- Uses only a small part of the frequency spectrum and sends only one signal at a time
- Was commonly used in LANs before twisted pair

#### Broadband:

- Technology used in cable television
- Transmitter shifts digital signal to a specific frequency band and sends analog signal to receivers
- Computer data shares cable with TV channels

# Media Using Light Energy

- Optical fibers
- InfraRed transmission
- · Point-to-point lasers

# Fiber Optics

- The medium consists of a thin, flexible strand of silicon or glass
- The signal consists of pulses of light – a pulse of light means '1'
  - lack of pulse means '0'

# **Fiber Optics**

#### Three components are required:

- Fiber medium: Current technology carries light pulses for long distances (100's of kilometers) with virtually no signal loss
- Light source: typically a Light Emitting Diode (LED) or laser diode
- A photo diode light detector, which converts light pulses into electrical signals

## Fiber Optics - Advantages

- Tremendously high data rate, almost negligible error rates
- Difficult to make unauthorized taps
- Much thinner than existing copper circuits

   Phone companies can replace thick copper wiring with fibers having much more capacity for same volume
- Not susceptible to electrical interference
- Greater repeater distances

## **Fiber Uses**

#### Telephone

 Long-haul trunks -- common in telephone networks

#### Internet

 The prevalent medium in the backbone of the Internet

#### Local area networks

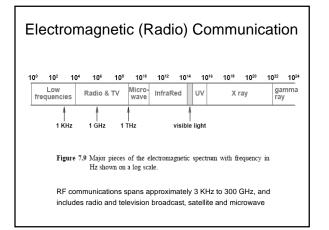
- 100Mbps ring networks (expensive)

| Typical Guided Media |                    |           |                  |  |  |  |
|----------------------|--------------------|-----------|------------------|--|--|--|
| Media                | Data rate          | Bandwidth | Repeater spacing |  |  |  |
| CAT 3                | 10 Mbps            | 16 MHz    | 2 – 10 km        |  |  |  |
| CAT 5e               | 100 Mbps/<br>1Gbps | 100 MHz   | 2 – 10 km        |  |  |  |
| Coax                 | 500 Mbps           | 1 GHz     | 1 – 10 km        |  |  |  |
| Optical fiber        | 10 Gbps            | 2 GHz     | 10 – 100km       |  |  |  |

## Infrared (IR) Communication

- Electromagnetic radiation that falls outside the range that is visible to a human eye Like visible light, infrared disperses quickly
- IR commonly used to connect to a nearby peripheral
  - Does not pass thru solid objects

## Point-to-Point Laser


A pair of devices with a beam that follows the line-of-sight

- Requires a clear, unobstructed path between the communicating sites
- The sending and receiving equipment must be aligned precisely to insure that the sender's beam hits the sensor in the receiver
- Laser technology is useful in cities to transmit from building to building

## Wireless Transmission

Most common form of unguided communication uses electromagnetic energy in the Radio Frequency (RF) range Terrestrial Radio Channels:

- Easy to generate
- Travels long distances
- Penetrates buildings
- Omnidirectional
- Subject to interference from electrical equipment
- Government licensed by the FCC (in the USA)



|             | Classification      | Range               | Type Of Propagation                                                          |
|-------------|---------------------|---------------------|------------------------------------------------------------------------------|
| Terrestrial | Low<br>Frequency    | <2 Mbps             | Wave follows earth's curvature, but<br>can be blocked by unlevel terrain     |
|             | Medium<br>Frequency | 2 to 30 Mbps        | Wave can reflect from layers of the<br>atmosphere, especially the ionosphere |
| Λ           | High<br>Frequency   | > 30 Mbps           | Wave travels in a direct line, and will<br>be blocked by obstructions        |
| errestrial  | Figure 7            | .10 Electromagnetic | wave propagation at various frequencies.                                     |
|             |                     |                     |                                                                              |

| Orbit Type    | Description                                             |  |
|---------------|---------------------------------------------------------|--|
| Low           | Has the advantage of low delay, but the disadvantage    |  |
| Earth Orbit   | that from an observer's point of view on the earth,     |  |
| (LEO)         | the satellite appears to move across the sky            |  |
| Medium        | An elliptical (rather than circular) orbit primarily    |  |
| Earth Orbit   | used to provide communication at the North and          |  |
| (MEO)         | South Poles                                             |  |
| Geostationary | Has the advantage that the satellite remains at a fixed |  |
| Earth Orbit   | position with respect to a location on the earth's      |  |
| (GEO)         | surface, but the disadvantage of being farther away     |  |

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.

## **GEO** Communication Satellites

- The distance required for a geostationary orbit is 35,785 kilometers (22,236 miles)
- At the speed of light, the trip takes:

 $\frac{2 \times 35.8 \times 10^{6} meters}{3 \times 10^{8} meters/sec} = 0.238 \, sec$ • A propagation delay of approximately 0.2 seconds can be significant for some applications

## Low Earth Orbit (LEO) Satellites

- Low Earth Orbit (LEO) satellites are typically placed at altitudes of 500-600 kilometers or higher
- LEO satellites are used in clusters (array deployment) that communicate and forward messages, as needed

For example, when a user in Europe sends a message to a user in the USA

- A ground station in Europe transmits the message to the satellite currently above it
- The cluster of satellites forward the message to the satellite in the cluster that is currently over a ground station in the USA
- Finally, the satellite currently over the USA transmits the message to a ground station

# Tradeoffs Among Media Types

Choice of media involves a complex evaluation of multiple factors:

- Cost: materials, installation, operation, and maintenance
- Data rate: bits per second that can be sent
- Delay: time for signal propagation or processing
- Affects on signal: attenuation and distortion
- Environment: susceptibility to interference and electrical noise
- Security: susceptibility to eavesdropping

## Measuring Transmission Media

The two most important performance measures of a transmission medium:

 Propagation delay time required for a signal to traverse the medium
 Channel capacity

maximum data rate that the medium can support

# *Nyquist's sampling theorem* gives the relationship between bandwidth and maximum data transmission speed

 $D = 2B \log_2 K$ 

where

D = maximum data rate B = hardware bandwidth K = number of states used to encode data

#### **Bad News**

Nyquist's Theorem specifies an absolute maximum that cannot be achieved in practice due to various types of background noise (thermal, intermodulation, impulse)

# Shannon's Theorem

Gives capacity of data channels with noise:

#### $C = B \log_2 (1 + S/N)$

where C = the effective channel capacity in bps B = hardware bandwidth S = the average signal power N = the noise power S/N is the signal-to-noise ratio

### Voice Grade Lines

Signal-to-noise ratio is approximately 30 dB ( $dB = 10\log_{10}S/N$ , so 30 dB has S/N = 1000) Effective capacity is  $3000\log_2 (1 + 1000) \approx 30000 \text{ bps}$ 

Conclusion: dialup modems have little hope of exceeding 28.8 Kbps

## The Bottom Line

- Nyquist's theorem says finding a way to encode more bits per cycle will improve the data rate
- Shannon's theorem says that no amount of clever engineering can overcome the fundamental physical limits of a real transmission system

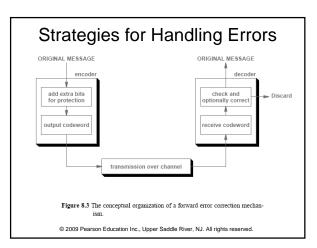
## More Bad News

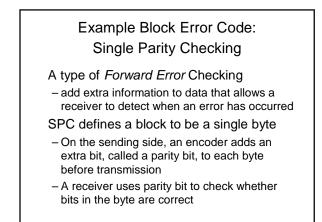
- All data communications systems are susceptible to errors
- Interference:
- Electromagnetic radiation emitted from devices
   Attenuation:
- Energy dissipates with distance
- Distortion: Wires have resistance, capacitance, and inductance which distort signals Magnetic or electrical interference distorts signals
- Distortion can result in loss or misinterpretation of signals

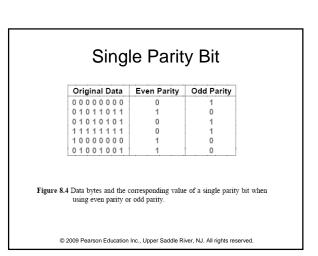
# **Transmission Errors**

#### Spike:


Extremely short duration interference often the cause of a single bit error

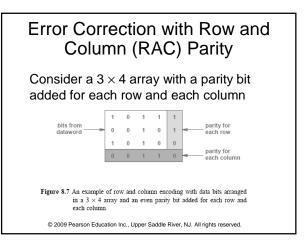

#### Burst errors:

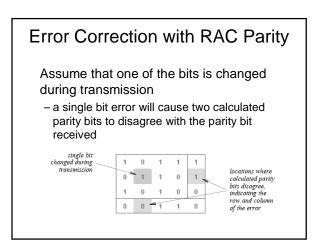

Longer duration interference or distortion can produce

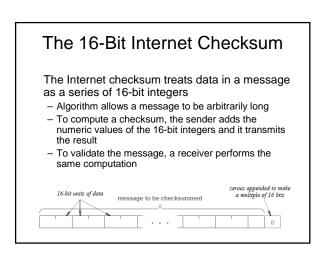

#### Erasure:

An ambiguous signal that is neither clearly 1 nor 0






## **Channel Coding Strength**

- No channel coding scheme is ideal
  - Changing enough bits will always transform to a valid codeword
- SPC is a weak form of channel coding
  - can detect errors but cannot correct errors
- Even parity can only detect errors where an odd number of bits are changed
  - If a burst error occurs with two, four, six, or eight bits changed, the receiver will incorrectly classify the incoming byte as valid







| Cyclic Redundancy Check (CRC)<br>Used in high-speed data networks                                                                                                    |                                 |                                                                                                                                    |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                      | Arbitrary Length<br>Message     | As with a checksum, the size of a dataword is not fixed,<br>which means a CRC can be applied to an arbitrary length<br>message     |  |  |  |  |
|                                                                                                                                                                      | Excellent Error<br>Detection    | Because the value computed depends on the sequence<br>of bits in a message, a CRC provides excellent error<br>detection capability |  |  |  |  |
|                                                                                                                                                                      | Fast Hardware<br>Implementation | Despite its sophisticated mathematical basis, a CRC<br>computation can be carried out extremely fast by<br>hardware                |  |  |  |  |
| Figure 8.10 The three key aspects of a CRC that make it important in data networking.<br>© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. |                                 |                                                                                                                                    |  |  |  |  |