

Linux is free

- · Excellent tools
- · Lots of documentation
- Works on less than state-of-the-art hardware

(But newer versions with GUIs suck up CPU cycles just like MS Windows)

 Not many magic configurations Mostly readable text files

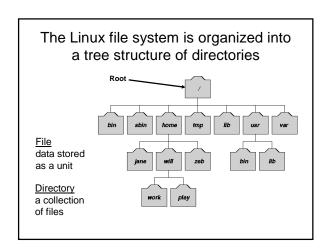
Linux Benefits

- · Not just for techies anymore
- Installation can be burned on CD or run from a USB drive
- Good security

But running a "production" system requires lots of tinkering & tuning

Common Linux Distributions

- Ubuntu / Debian in D017 lab
- SuSE (Novell)
- Mandriva
- RedHat
- Slackware
- Linspire / Freespire



Linux is a multiprocess, multiuser, interactive computing environment

П

- *Multiprocess* several programs can run at the same time
- *Multiuser* Multiple users can be using the same system at the same time
- Can operate in either a text-based interface or GUI
- Designed for a networking environment

net02

Directory references

→ root (no drive letters like Windows)

→ your home directory

→ current directory

. . → parent of current directory

Reference files with a pathname

absolute: starts from the root

relative: starts from current working directory

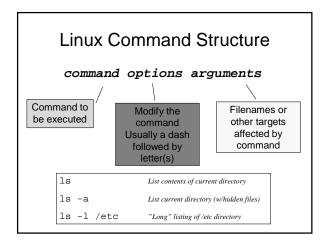
Wildcards

- * → matches any number of characters
- ? → matches any single characters

The Linux Shell - a command interpreter

- · Similar to DOS
- Several available but most common is BASH (Bourne Again SHell)

Note: Linux commands are case sensitive


Location of Commands

Most user commands are in

/bin
/usr/bin
/usr/local/bin

Most system administration commands are in

/sbin /usr/sbin

Common Commands

1s - list directory contents

cp - copy files

mv - move/rename files

rm - remove/delete files

mkdir - make a new directory

cd - change directory

more/less - display contents of a text file

man - get help about a command

Command Editing

- Left and Right Arrow keys (not the mouse) can be used to move through a command line
 - Can edit at the cursor position
- Command history
 - Previous commands are stored in a list
 - Up and Down Arrow keys cycle through previously entered commands
- File name completion
 - Type the start of a file name and press Tab, and name will automatically be completed

net02 2

Shell Power

Redirection

Output to a file or input from a file

```
ls -al > myfiles
wc -l < myfiles</pre>
```

Piping

Output from one command is input for another

```
ls -1 | wc -1
```

Shell Script Power

- Shell scripts store commands in a text file that can be executed like a program
- Shells have a simplified but complete programming language for shell scripts

Example Script

Scan some text to find and print the 20 most frequently used words, together with counts of how often they occur.

```
tr -c -s '[:alpha:]' '[\n*]' < FILE | \
sort | \
uniq -c | \
sort -n -r -k 1,1 | \
sed 20q</pre>
```

Access Control with Permissions

- Important for security in multiuser and networked environments
- Each directory and file has an owner who created it
- Users belong to groups
- Access permissions determine what operations a user can perform on a directory or file

Access permissions

Permission	Directory	File
r	List the directory	Read contents
W	Create or delete files	Write contents
х	Access files and subdirectories	Execute

Access modes consist of three permissions, for each of user – applies to owner of file group – applies to users belonging to the group assigned to file other – applies to other users

File Permissions 4 olanm users tools/ drwxr-xr-x 8 olanm users drwx---private/ -rw-r--r--1 olanm users prog2.zip -rwxr-xr-x 1 olanm users myscript Owner File Access modes

net02 3

Changing Permissions

chmod command

chmod +w somefile
chmod u+x somescript
chmod o-x somedirectory
chmod go+rw somefile
chmod 755 somescript

Basic Networking Tools

ping (Packet INternet Groper)

- Sends packet to remote computer
- Remote computer replies with echo packet
- Local computer reports
 - · Receipt of reply
 - Round trip times for packets
 - · Statistics of the transmission

ping examples

```
olanm@zeus:-$ ping loki
PING loki.stockton.edu (134.210.1.200): 56 octets data
64 octets from 134.210.1.200: icmp_seq=0 ttl=63 time=0.4 ms
64 octets from 134.210.1.200: icmp_seq=1 ttl=63 time=0.2 ms
64 octets from 134.210.1.200: icmp_seq=2 ttl=63 time=0.3 ms
64 octets from 134.210.1.200: icmp_seq=3 ttl=63 time=0.3 ms
64 octets from 134.210.1.200: icmp_seq=4 ttl=63 time=0.3 ms
64 octets from 134.210.1.200: icmp_seq=5 ttl=63 time=0.3 ms
64 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
64 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
64 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
65 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
66 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
67 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
68 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
69 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
60 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
61 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
62 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
63 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
64 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
65 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
66 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
67 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
68 octets from 134.210.1.200: icmp_seq=6 ttl=63 time=0.3 ms
69 octets from 134.210.1.200: icmp_seq=6 ttl=63
```

ping examples

```
olanm@zeus:~$ ping -c 6 netbook.cs.purdue.edu
PING netbook.cs.purdue.edu (128.10.19.20): 56 octets data
64 octets from 128.10.19.20: icmp_seq=0 ttl=241 time=44.2 ms
64 octets from 128.10.19.20: icmp_seq=1 ttl=241 time=43.9 ms
64 octets from 128.10.19.20: icmp_seq=2 ttl=241 time=43.7 ms
64 octets from 128.10.19.20: icmp_seq=3 ttl=241 time=44.2 ms
64 octets from 128.10.19.20: icmp_seq=5 ttl=241 time=44.3 ms
--- netbook.cs.purdue.edu ping statistics ---
6 packets transmitted, 5 packets received, 16% packet loss
round-trip min/avg/max = 43.7/44.0/44.3 ms
```

Basic Tools

traceroute

- Sends a series of packets along the path to destination
- Each successive packet identifies the next router along path
- Uses an expanding ring search

traceroute example

```
Olanm@zeus:-$ traceroute netbook.cs.purdue.edu
traceroute to netbook.cs.purdue.edu (128.10.19.20), 30 hops max, 38 byte packets
1 134.210.177.233 (134.210.177.253) 0.446 ms 0.346 ms 0.454 ms
2 134.210.5.249 (134.210.5.249) 0.806 ms 0.658 ms 0.853 ms
3 14.0-0-181.EDGE-RTR1.ATC.verizon-gni.net (130.156.249.1) 1.994 ms 2.637 ms
4 130.156.250.122 (130.156.250.122) 8.984 ms 8.994 ms 9.214 ms
5 local.njedge.mappi.net (216.27.98.41) 11.445 ms 11.177 ms 11.558 ms
6 * * *
7 remortel.abilene.mappi.net (216.27.98.41) 11.445 ms 11.177 ms 11.558 ms
6 * * *
8 nycmng-washng.abilene.ucaid.edu (198.32.8.82) 11.497 ms 14.260 ms 14.245 ms
8 nycmng-washng.abilene.ucaid.edu (198.32.8.82) 49.094 ms 38.950 ms 38.745
ms
10 iplsng-chinng.abilene.ucaid.edu (198.32.8.7) 42.324 ms 42.700 ms 42.199
ms
11 192.12.206.250 (192.12.206.250) 43.004 ms 42.530 ms 42.558 ms
12 tel-210-m10-01-pp.tcom.purdue.edu (192.5.40.129) 43.700 ms 43.546 ms
43.737 ms
13 tel-210-c6509-01-campus.tcom.purdue.edu (192.5.40.53) 44.445 ms 43.432 ms
43.517 ms
14 * * *
15 lucan.cs.purdue.edu (128.10.19.20) 43.803 ms 43.490 ms 43.916 ms
```

net02 4