CSIS 4222 Computer Networking

Spring 2010 Dr. Mike Olan

Computing professionals need to be knowledgeable in this important field.

Learning the fundamentals will give you a solid foundation for future work and more advanced study.

Networks provide a means for improved access and sharing of resources

- The Web
- · Social networking
- Multimedia
- Communications
- Email
- File transfer
- Remote login/execution

CSIS 4222

What is a computer network?

- An *interconnected* collection of *autonomous* computers*
 - Interconnected: capable of exchanging messages
 - Autonomous: do not control one another
 - * Many other devices can also connect to networks

What are the basic components of a computer network?

- Hardware: Physically connects machines to one another
- **Protocols:** Specify the services provided by a network (makes the hardware usable by programmers and application software)

Basic computer network components

Special-purpose hardware devices to

- interconnect transmission media
- control transmission

- run protocol software

Protocol software

- encodes and formats data
- detects and corrects problems

What does a computer network do?

Provides communication between applications that is

- Reliable
- Efficient
- Fair

What does a computer network do?

Automatically finds optimal path from source to destination

Automatically detects and corrects problems like

- Data corruption
- Data loss
- Duplication
- Out-of-order delivery

Just a little history

(see: www.zakon.org/robert/internet/timeline)

The Advanced Research Projects Agency (ARPA) initiated a project in the 1960s to connect researchers with computers

Resulted in a system for remote access to expensive resources

Adopted new technologies

- Packet switching
- Internetworking

Packet Switching

Data transmitted in small, independent pieces

- Source divides outgoing messages into packets
- Destination recovers original data
- Each packet travels independently
 - Includes enough information for delivery
 - May follow different paths
 - Can be retransmitted if lost

Internetworking

- Many (mutually incompatible) network technologies
- No one technology appropriate for every situation
- Internetworking glues together networks of dissimilar technologies with routers
- Result is a *virtual network* whose details are invisible

Networking Today

Powerful devices are cheap Networks are everywhere

- Only need a modem and phone line, cable, or wireless connection and software to join a network
- Blurred lines between data processing and data communications equipment
- Fewer differences between data, voice, and video communications

Basic Network Communication Paradigm

- Establish contact
- Exchange data (bi-directional)
- Terminate contact

The subject material in this course is complex!

Has no single underlying theory Uses multiple technologies Changes rapidly

We will concentrate on *concepts* and *practical applications*

The Big Picture

The material covered in this course involves:

- How data is encoded
- How data is transmitted
- How protocols transfer data reliably
- How applications operate over the resulting infrastructure

Five Key Aspects of Networking

To master the complexity, it is important to gain a broad background that includes:

- 1. Network Applications
- 2. Data Communications
- 3. Packet Switching and Networking Technologies
- 4. Internetworking with TCP/IP
- 5. Additional Networking Concepts and Technologies

Networks, Interoperability, Standards

Communication always involves at least two entities

- one sends information and another receives it
 All entities must agree on how information will be
- represented and communicated
- An important issue is *interoperability* - the ability of two entities to communicate

All communicating parties agree on details and follow the same set of rules (protocols)

Protocol Suites and Layering Models

- Each protocol should handle a part of communication not handled by other protocols
- Protocols are designed in complete, cooperative sets called suites so that they will work well together
- Each protocol in a suite handles one aspect of networking

Protocol Suites and Layering Models

The fundamental abstraction used to collect protocols into a unified whole is known as a layering model

Layers help protocol designers and implementers manage complexity

 Concentrate on one aspect of communication at a given time

Topic		Transition	
Telephone system	Switch from	n analog to Voice over IP (VoIP)	
Cable television	Switch from	Switch from analog delivery to Internet Protocol (IP)	
Cellular	Switch from analog to digital cellular services (3G)		
	Switch from wired to wireless access (Wi-Fi)		
Internet access		Switch from centralized to distributed services (P2P)	
Internet access Data access Figure 2.5	Switch from	n centralized to distributed services (P2P) nsitions in networking and the Internet.	
Internet access Data access Figure 2.5 Applicatio	Switch from Examples of tra	m centralized to distributed services (P2P) nations in networking and the Internet. Significant For	
Internet access Data access Figure 2.5 Applicatio High-quality telecc	Switch from Examples of tra-	m centralized to distributed services (P2P) asitions in networking and the Internet. Significant For Business-to-business communication	
Internet access Data access Figure 2.5 Applicatio High-quality teleco Navigation system	Switch from Examples of tra- onferencing	n centralized to distributed services (P2P) mitions in networking and the Internet. Significant For Business-to-business communication Military, shipping industry, consumers	
Internet access Data access Figure 2.5 Applicatio High-quality telecc Navigation system Sensor networks	Switch from Examples of tra- on ferencing S	n centralized to distributed services (P2P) mitions in networking and the Internet. Significant For Business-to-business communication Military, shipping industry, consumert Environment, security, fleet tracking	

Topics and Scope of CSIS 4222

Computer networks and internets

Broad overview of concepts, terminology (lots of it!), and technologies that form the basis for digital communication

Hands-on experience configuring and administering a Linux network

Summary

Studying networks is important because

- The world is interconnected
- Applications now operate in a distributed environment

This course

- Covers networking and internetworking concepts
- Explains how some of it works