
CSIS 4135 Fall 2010

web13 1

CSIS 4135

Caching and Tracing

Where are the bottlenecks?

First mile?
 Origin infrastructure – gets the most attention

when designing web apps

Last mile?
 User access – dial-up vs. broadband

Middle mile?
 The time data travels between server and client

Follow the money

Users Companies

No man's land of
13,000 competing

networks

Stuck in the middle

 Little incentive to build up capacity
 Networks often want to minimize incoming traffic

that they don't get paid for

 Reliability problems
 Cable cuts, power outages, DDoS attacks

 Border Gateway Protocol (BGP) vulnerability

 Increased traffic loads due to rich media,
smart phones, etc.

 Distance and TCP protocol round trip time

Content delivery approaches

 Centralized hosting
 Mirror sites closer to end users

 Content Delivery Networks (CDNs)
 Offload cacheable content from origin server to shared

networks (often on wrong side of middle mile)

 Highly distributed CDN
 Puts content on the right side of middle mile (ISP)

 Peer-to-peer networks
 Very highly distributed, but broadband generally fast in one

direction only

Caching

 Temporarily store expensive resources
in memory
 Reduces load on web server

 Faster access for clients

 Recent requests cached in memory

 Subsequent requests are served from
in memory cache

CSIS 4135 Fall 2010

web13 2

Caching

 Many sites spend considerable effort
generating the same web pages over
and over
 For example, a product catalog is updated

each night, but is accessed tens of
thousands of times a day

 Server-side caching can vastly improve
performance and scalability

 ASP.NET provides support for
 Page output caching
 Data caching

Page Output Caching

 Entire web page output (HTML) is cached

 Must specify life of cached page (in seconds)

 Can cache multiple versions of a page, by:
 GET/POST parameters; use VaryByParam

 HTTP header; use VaryByHeader

 Browser type or custom string; use VaryByCustom

<%@ OutputCache Duration="25" VaryByParam="*" %>

Data Caching

 Page level caching has a problem when
pages are dynamically generated from
database table information
 What if table changes before cache expires?

 Updated data won't appear until cache expires

 Fix this by enabling table level caching in the
database

Table Level Caching

This requires running aspnet_regsql from the
command line to enable caching on the
database
Example:

-S = server -E = Windows authentication
-ed = enable db (-U = SQL Server login)
-d = database
-et = enable table
-t = table

aspnet_regsql -S .\SQLSERVER2005 -E -ed -d Basics -et -t Quotes

Table Level Caching

 The aspnet_regsql command creates a
cache table and a "trigger" that updates the
cache table whenever the original table
changes.

 This enables polling the database every
couple seconds to see if anything has
changed and updating the cache table

Polling
To use this feature, some configuration
of the web application is needed
 Web.config:

 Page directive:

<system.web>
<caching>

<sqlCacheDependency enabled="true" pollTime="2500" >
<databases>

<add connectionStringName="Basics" name="Basics"/>
</databases>

</sqlCacheDependency>
</caching>

<%@ OutputCache Duration="25" VaryByParam="none"
SqlDependency="Basics:Quotes" %>

CSIS 4135 Fall 2010

web13 3

Notification

 Relatively new feature for SQL Server
that eliminates polling and only notifies the
application when a change occurs

 Page directive:

 Add a global.asax file to the project, and
in the Application_Start method:

<%@ OutputCache Duration="25" SqlDependency="CommandNotification" %>

System.Data.SqlClient.SqlDependency.Start(
ConfigurationManager.ConnectionStrings["Basics"].ConnectionString);

Notification

 There is a gotcha when using notification

 Form SELECT statements like this example:

Note:

 Can't use *

 Table name must have owner prefix

SELECT Quotation, Author, Category, Creation_date FROM dbo.[Quotes]

Partial Page Output Caching

 Can cache a portion of a page by placing it in
a User Control

 Can cache multiple versions of a User
Control on a page, by including a page
attribute or by class attributes

 The Substitution control can also be used to
bypass caching for part of the page

Caching in the Browser

 Don’t confuse server-side page output
caching with how the browser and proxy
servers cache the page

 Use Response.Cache to specify HTTP
cache headers
 Contains a HttpCachePolicy object

Tracing

 A convenient way to get lots of information
about the current request

 Can be done at
 Page level

 Application level

Page Level Trace

 Add the following to the @Page directive at
the top of the .aspx file
 Trace="true"

 This results in trace output appended to the
content of the page
 Cookies, forms, query strings, etc.

 Don't want this visible to clients

CSIS 4135 Fall 2010

web13 4

Application Level Tracing

 More flexible and practical

 Logs trace output for review later

 Hides trace output from users of the page

 Enabled in Web.config

Application Level Tracing

In Web.config:
<trace

enabled="true"

requestLimit="10"

pageOutput="false"

traceMode="SortByTime"

localOnly="true"

/>

Application Level Tracing

Access trace output using the applications
URL and Trace.axd

http://localhost/basics/Trace.axd

