
CSIS 4135 Fall 2010

web08
1

CSIS 4135

Authentication, Authorization, 
and Role Based Security

Security in .NET

 Can be integrated with Windows and NTFS 
security, or done independently

 Idea is to selectively restrict access to 
portions of a web site through
 Authentication

 Authorization

 Impersonation

 Delegation

ASP.NET Access Controls

 Authentication:
 Who are you?
 Verify that clients are who they say they are

 Authorization:
 What will I allow you to do?
 Does the client have permission to access the requested 

resource?
 Impersonation:

 ASP.NET assumes the role of the user gaining access 
(has same access as user)

 Delegation:
 More powerful form of impersonation

ASP.NET Security Layers

 Two Layers:
 IIS can accept or reject a request

 If accepted, request passed to ASP.NET which 
also makes a security decision

 IIS and ASP.NET security systems are 
completely independent of each other

Authentication

 Authentication required if access is to be 
restricted

 User credentials validated against some 
authority
 Usually a user name and password

 Authority can be Windows security, or info 
stored in a config file or SQL Server

 If not done, client is an anonymous user
 Anonymous access is allowed by default

Authentication Modes

 Windows – Requires a Windows login 
account

 Form – HTML form gathers credentials and 
submits to the application

 Windows Live – Centralized Microsoft 
authentication service

 None 



CSIS 4135 Fall 2010

web08
2

Forms Authentication

 Does not require clients to have a Windows 
account or recent version of Internet Explorer

 Programmer must do more work
 Create custom login form
 Compare user credentials with usernames and 

passwords in a data store

 Note: Form data sent unencrypted unless 
SSL is used

Example (Bad) Example

private void Button1_Click(object sender, System.EventArgs e)
{

if (userName.Text == "Mike" && password.Text == "password") 
{

loginMsg.Text = "Authenticated!";
FormsAuthentication.RedirectFromLoginPage(userName.Text, false);

} 
else
{

loginMsg.Text = "Not authenticated";
}

}

(Better) Example

private void Button1_Click(object sender, System.EventArgs e) {
if (FormsAuthentication.Authenticate(userName.Text, password.Text)) 
{

FormsAuthentication.SetAuthCookie(userName.Text, false);
Response.Redirect("welcome.aspx");

} 
else
{

loginMsg.Text = "Not authenticated: " + userName.Text
+ " " + password.Text;

}
}

Authentication data is in Web.config

Example

<authentication mode="Forms" >
<forms name="QuoteASPCookie" loginUrl="login2.aspx" >
<credentials passwordFormat="Clear">
<user name="Tom" password="tommy" />
<user name="Dick" password="dicky" />
<user name="Harry" password="harry" />
</credentials>
</forms>

</authentication> 



CSIS 4135 Fall 2010

web08
3

Membership API

 Implement Membership functionality using 
Login controls

 Role Based Security
 Authentication: Using credentials to prove you are 

who you claim you are (user ID & password)

 Authorization: User roles that give privileges for 
an authenticated user
 Programmer can define the user roles

Site Admin

 Use Web Site Configuration tool, and select 
Security tab

 For Authentication type, select "From the 
Internet"

 Make a new role

 Create users (needs strong password)

Login page

 Add a page and put in a Login control

 Set the DestinationPageURL for where to go 
after logging in

 Can use LoginStatus, LoginName, LoginView 
controls

Login page

 Can also add a password recovery control, 
CreateUser or ChangePassword controls

 Use web site admin tool to see the users, 
delete, etc…

Roles Revisited

 Add a page for secure access only

 Also add a page for redirecting unauthorized 
access

Summary

 Membership class
 Managing users
 Working with lists of users
 User stats

 Role class
 Managing users in Roles
 Managing Roles

 User class
 Determining whether User is in a specific role


