
CSIS 4135 Fall 2010

web04 1

CSIS 4135

Data transfer over HTTP,

Query Strings, Cookies,

Managing State

Data Transfer over HTTP

 URL Encoding (Query strings)

 Form Data

 Cookies

 Redirection

URL Encoding

 Parameters are key-value pairs appended to the
end of a URL

 Encoded parameters are sent as part of the HTTP
header

http://indra.stockton.edu/hw/Submit.aspx?class=2101&proj=hw1

Start of

parameter list

Pairs separated

by "&"

Form Data

<form name="form1" method="post" action="">
 <input type="text" name="textfield"
 value="Enter something here">
 <input type="submit" name="Submit" value="Go">
 <input type="hidden" name="hidField" value="secret">
</form>

Form Data

There are two methods for sending form data.

 GET

 Form field name/value pairs are added as URL
parameters

 POST
 The encoded form input is sent as part of the

request message (read from standard input on
server).

GET vs. POST

 GET
 Data must be handled as name/value pairs

 Relatively short fields

 Security is not an issue

 POST

 Data must be handled as name/value pairs

 Suitable when lengthy parameters need to be
passed

 Encryption of the request is possible

CSIS 4135 Fall 2010

web04 2

ASP.NET Form Data

 Server code has access to form data using

the Request object

Using GET: mypage.aspx?item1=something&item2=nothing

 String s1 = Request["item1"];

 String s2 = Request["item2"];

ASP.NET Controls: String s = Request["TextBox1"];

Cookies
 A mechanism to store a small amount of data

(up to 4KB) on the client

 A cookie is
 associated with a specific web site

 sent in HTTP header with each HTTP request

 A cookie can
 last for only one session (until browser is closed)

or

 can persist across sessions and expire some time
in the future

Cookies

telnet www.photo.net 80
Trying 10.101.0.100...
Connected to prd0103-006-100.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.0 200 OK
MIME-Version: 1.0
Content-Type: text/html
Set-Cookie: ad_browser_id=87717925; Path=/; Expires=Fri, 01-
Jan-2010 01:00:00 GMT
Set-Cookie:
ad_session_id=87717926%2c0%2cOLzCSFR5iruy1Seta3mAEyBG7U4JCr3h%
2c986130268; Path=/; Max-Age=3600 ...

C# Cookie Class

 Easy to process cookies in C#

 Response maintains a CookieCollection

 Create a cookie:

HttpCookie cookie =
 new HttpCookie("ZipCode","08240");

Response.Cookies.Add(cookie);
Name Value

Note: Value should not

include comma’s or

semicolon’s

Replacing a Cookie

 Adding a cookie with the same name

replaces the old cookie:

 cookie.Value = cookie.Value + “-0195";

Response.Cookies.Add(cookie);

Getting Cookie Info

HttpCookie cookie =

 Request.Cookies.Get("ZipCode");

if (cookie == null)

{

 // cookie with name "ZipCode" doesn’t exist

}

else

{

 // cookie exists, can access cookie.Value

}

CSIS 4135 Fall 2010

web04 3

Cookie Persistence

 By default, a cookie lasts for one session

(until browser is closed)

 A cookie can persist beyond this by setting

an expiration time

 Set cookie to expire in one year

cookie.Expires = DateTime.Now.AddYears(1);

Response.Cookies.Add(cookie);

Cookie Persistence

 Kill a persistent cookie by setting its expiration

date to sometime in the past

cookie.Expires = DateTime.Now.AddHours(-1);

Response.Cookies.Add(cookie);

Managing State

 Recall that the HTTP protocol doesn’t support

maintaining state information (variables)

 Each request/response is independent and

nothing is remembered between subsequent

pages

 Cookies and query strings are ways to pass

data between request & response, thus

maintaining state information

Maintaining State in ASP.NET

 Several innovative ways were developed

 view state

 session state

 application state

We’ll look at view state and session state for now

View state concepts

 View state is an ASP.NET feature for retaining the
values of page and control properties from one
execution of a page to another

 It is a collection of key/value pairs that represents
the page and control properties

 You can also add your own data to the view state

 Before ASP.NET sends a page back to the client, it
determines what changes the program has made to
the page, encodes them in a string, and assigns the
string to the value of a hidden input field named
_VIEWSTATE

Session state concepts

 For each user session, ASP.NET creates a session
state object.

 The session state object includes a session ID that
is sent back to the browser as a cookie.

 The browser automatically returns the session ID
cookie to the server with each HTTP request.

 The session ID lets the server find the right session
state object.

 The session state object can be used to store and
retrieve items that can be used by any of the pages
in the application.

CSIS 4135 Fall 2010

web04 4

Server
First HTTP request:

The browser requests a page.

ASP.NET creates a session

state object and assigns an ID

for the session.

Client

Web server

First HTTP response:

The server returns the

requested page along with the

session ID.

Next HTTP request:

The browser requests another

page. The server uses the session

ID included in the request to

associate the browser with the

correct session state object.

Web server

Web serverBrowser

Browser

Browser Session ID

Session ID

How ASP.NET maintains the

state of a session Typical uses for session state

 To keep information about the user, such

as the user’s name or whether the user has

registered

 To save objects the user is working with,

such as a shopping cart or a customer record

 To keep track of pending operations, such

as what steps the user has completed while

placing an order

Session State Examples

Add or update a session state item

Session["EMail"] = email;

Retrieve the value of a session state item

 string email = Session["EMail"].ToString();

Removes an item from session state

 Session.Remove("EMail");

Retrieves a session state item from a non-page class

 string email =
HttpContext.Current.Session["EMail"].ToString();

An application that counts the

times the user clicks the button

Code for the Counter App
private int sessionCount;

protected void Page_Load(object sender, EventArgs e)
{
 if (Session["Count"] == null)
 sessionCount = 0;
 else
 sessionCount = Convert.ToInt32(Session["Count"]);
}

protected void Post_Click(object sender, EventArgs e)
{
 sessionCount++;
 SessionClicks.Text = "You have clicked the button "
 + sessionCount + " times.";
}

protected void Page_PreRender(object sender, EventArgs e)
{
 Session["Count"] = sessionCount;
}

Options for tracking session IDs

Cookie-based session tracking (the default)
But if a browser doesn’t support cookies, this
doesn’t work.

Cookieless session tracking
Encodes the session ID as part of the URL. So
cookieless session state works whether or not the
browser supports cookies.

