
 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 1 of 33 pages Current as of 02/20/2007 3:14 PM

The Reddick-Gray Unified Naming Conventions

 Version 1.01
Copyright © 2006-2007 by David A. Gray, MBA

In 1992, Stan Leszynski and Greg Reddick and others published a document which became
known as the “The Reddick VBA (RVBA) Naming Conventions.” As the VBA programming
language, for which it was intended, evolved, so did the standard. In reviewing version 6.01 of
the standard, published at http://www.xoc.net/downloads/rvbanc.pdf on the Web site of Greg
Reddick’s company, I am gratified to note that several additions that I suggested in the early
days, when I was actively corresponding with Greg, Ken Getz, and others, have been
incorporated.

Nevertheless, the standard still has limitations, arising from three sources.

1. Function and Sub Parameters. – The most serious weakness is that the convention fails
to designate a prefix for function and subroutine parameters that are passed by value,
although it makes allowance for those passed by reference. Given that passing by reference
is generally, and justifiably, discouraged, I prefer to distinguish parameters as a class,
retaining the option of incorporating the method by which they are passed in other ways.

2. Unnecessary Complexity. – The naming of user defined types and enumerations
introduces unnecessary complexity and causes confusion. I propose simplifications for the
naming of user defined types, and a different method of naming enumerations.

3. Naming of Program Labels. – The convention specified prefixes for labels used within
procedures. This labeling method makes cross referencing tools more difficult to use. I use
suffixes to address this need.

4. Other Programming Languages. – The standard is limited to the VBA programming
language. This limits its usefulness as a general tool for all programmers, and in shops, such
as mine, in which other languages are employed, including Visual Basic Scripting Edition
(VBScript) and JavaScript. With a little effort, the standard can be easily extended to cover
VBScript, C, C++, Perl, WinBatch, and other languages.

Before I set forth the complete set of conventions, I think it is important to discuss these four
issues, and specify how I address each.

Function and Sub Parameters

Although I liked the Leszynski-Reddick Naming Conventions, as they were initially known, a
consultation in 1995 that involved reviewing some code published by of Ken Getz brought to my
attention a glaring deficiency, which was that there was no allowance for a scope prefix to
cover procedure parameters. This made it difficult to identify the source of a variable that was
passed through the parameter lists of three or four levels of functions, and was passed to
countless related functions in the same module.

I adopted a rule, and applied it ruthlessly to Ken’s code. Applying the rule made the code
infinitely easier to follow, and I have used it ever since. The rule is quite simple; all procedure
parameter names are preceded by a p.

http://www.xoc.net/downloads/rvbanc.pdf

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 2 of 33 pages Current as of 02/20/2007 3:14 PM

Although the current version of the convention introduces the r prefix for parameters that are
passed by reference, it remains silent with respect to parameters passed by value.

Since passing parameters by value is preferred to passing by reference, especially with the
increased attention being given to security, this is a serious shortcoming, which must be
corrected. While it might be important to know that a parameter is passed by reference, I
believe it is more important to know that a variable is a parameter. If you keep your procedures
small, which is also a best practice, it will be easy enough to glance up at the parameter list in
the rare case when you need to know whether a parameter is passed by value or by reference.

Nevertheless, there is a way to compactly pack all of this information into the variable name, as
shown by Table 6 on page 13.

Unnecessary Complexity

Reddick goes on at some length about the naming of user defined objects. Having attempted to
follow this approach, I concluded that it caused more confusion than communication. I found
myself constantly asking myself whether the prefix in question refers to some obscure
predefined object type, or whether it was one of my own objects. After years of struggling with
this, I concluded that the naming of user defined variables and objects needed to follow a
simplified convention involving only a handful of prefixes.

My simplification is based on the idea that there are two classes of user defined variables, and
that the prefix should communicate the class to which a variable belongs. With respect to user
defined objects, either you are the author of the class, and you know its properties and
methods intimately, or you have ready access to its entire source, which is more than can be
said about the built-in objects.

Accordingly, I define just two tags, which are listed and defined in Table 1 below, and
repeated in the main list of tags in Table 4 - Tags for Variable Types, starting on page 6.

Table 1 - Tags for User Defined Types

Tag Description

uobj User defined object.

At first, I used obj, but have reserved this prefix for late bound object variables, and
for object variables for which no standard prefix exists.

utp User Defined Type, defined by Type … End Type block in VBA, and struct in C.

Naming of Program Labels

Conventions for naming of labels within procedures are, to put thing charitably, loose. The
RVBA document gives the following examples.

ErrorHandler:
ExitProcedure:

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 3 of 33 pages Current as of 02/20/2007 3:14 PM

Elsewhere, I have seen this.

MyProcedure:
Error_MyProcedure:
Exit_MyProcedure:

I have also seen this.

MyProcedure:
Err_MyProcedure:
End_MyProcedure:

The first example is ambiguous, because every procedure in a module (not to mention an
application composed of possibly hundreds or thousands of modules!) may contain a
ErrorHandler or ExitProcedure label.

While the second and third examples solve the ambiguity problem, they present another
problem that causes labels for error handlers and procedure exits to be separated from the
procedure name in alphabetical lists of labels, such as are produced by cross reference
generators and other code analysis tools.

I propose the use of suffixes to identify error handlers and exit points of procedures, as shown
in on page 14.

Other Programming Languages

It might be a stretch to say that the usefulness of the RVBA naming convention is limited to
Visual Basic for Applications. That was, after all, Reddick’s stated intention. Nevertheless, I feel
strongly about building on the work of others. With that in mind, I propose to extend the RVBA
Naming Conventions to cover other languages.

The first “foreign” languages to which I adapted the convention were two that are widely used
in Web programming, one of which is a close relative of VBA.

♦ Visual Basic Scripting Edition (VBScript) is the programming language of Active
Server Pages (ASP), Internet Explorer, and the WebBrowser control. Although slowly
being superseded by ASP.NET (aspx pages), there is still quite a bit of ASP code in
production. VBScript is also embedded in Web pages intended for rendering in Microsoft
Internet Explorer or the WebBrowser control. Public web sites that return content based
on the browser type use VBScript, as do many Intranet sites that run in controlled
corporate environments where the browser type is set by corporate edict.

♦ JavaScript, or ECMAScript, and its close cousin, Jscript, are used primarily for code
that is intended to run inside a Web browser. Since most modern browsers can run
JavaScript, it is the most widely used language for programming such things as Web
menus, image rollovers, and local form validators that run inside users’ Web browsers.

I have since adapted the convention to other programming languages, including the following.

♦ Perl, the Practical Extraction and Reporting Language, was created by Larry Wall to
expedite creation of reports about the contents of the numerous logs generated by Unix

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 4 of 33 pages Current as of 02/20/2007 3:14 PM

servers. With the help of many others, Perl has been extended well beyond its initial
scope. Today, it is used for numerous other tasks, including CGI programming, and it runs
on Windows.

♦ WIL, the Windows Interface Language, also known as WinBatch, was created by
Morrie Wilson, of Wilson WindowWare, Inc., and is the first batch programming language
that targets the Windows operating environment. WinBatch was well established by the
late 1990’s, when VBScript became a part of the Windows landscape. WinBatch programs
usually run faster than comparable VBScript programs, can call the Windows API directly,
and can be compiled into executable programs that can be distributed without paying any
royalties, and are hard to hack.

♦ C and C++ are the traditional languages of “real programmers,” and are best suited to
systems programming and creation of libraries of reusable code.

Although the Reddick Naming Convention is well suited to these languages, there are three
issues that must be addressed. Table 2 below lists and describes these issues.

Table 2 - Issues to Address in Adapting the Reddick Naming Convention

Issue Comment

Strict versus loose variable typing Whereas VBA variables are strongly typed, most scripting
languages, including VBScript, JavaScript, Perl, and WIL,
are not.

Although you may choose to retain the strict naming
convention to communicate the type of data that you
intend to store in each variable, the language will not
enforce your rules. Therefore, you may choose to
dispense with most variable type tags, as a reminder to
make no assumptions about the type of data in a
variable.

One noteworthy exception may be object variables, which
must be treated differently than any other type of
variable.

Native variable types ♦ The Reddick Naming Convention wisely calls
attention to arrays. Since all of the languages to
which I have extended the naming convention
support arrays, I retain the a prefix, even when I
elect to drop the type tags.

♦ In addition to arrays, Perl supports the hash, or
associative array. Like ordinary arrays, these
require special handling, and I assign the h prefix
to the names of hash variables.

♦ Like VBA, C and C++ variables are strongly typed.
However, there are native types in these languages

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 5 of 33 pages Current as of 02/20/2007 3:14 PM

Issue Comment

that have no equivalent in VBA. I have adopted the
well established Hungarian prefixes for these, and
incorporated them into the overall naming
convention.

Special scope issues In VBA, the value returned by a function must be
assigned to a variable whose name is that of the function.
Although I abhor this practice, it is required by the
language. Fortunately, except for VBScript, none of the
other languages to which I have extended this naming
convention has this liability.

I set aside the r prefix to identify the variable that holds
the return value of a function, because I think it is
important to know the name of the variable whose value
will survive, and pass into the caller’s scope, when the
function returns.

Note: This designation conflicts with the meaning
assigned in the RVBA conventions. However, my method
of tagging function parameters resolves this issue.

A Few Final Comments

The remainder of this document follows closely the work of, and the formatting used by, Greg
Reddick. For the benefit of readers who are accustomed to using some version of the RVBA
Naming Conventions, or one of its variants, I have highlighted places where my convention
deviates. Several of these deviations are to clarify ambiguities involving unlike objects that
shared a tag in the RVBA Conventions, and to maintain uniformity between like named Access
and Visual Basic objects.

Throughout the remainder of this document, most tables contain an extra column, not present
in the work of Greg Reddick, headed Languages. This column identifies the languages to
which the element in the corresponding row applies. In some cases, additional languages are
shown in parentheses. These are languages in which the item is optional, as in the case of
loosely typed languages, such as VBScript and Perl.

For the convenience of new programmers who have not seen the work of Greg Reddick, I have
incorporated his introduction to Hungarian notation, upon which our work is based.

An Introduction to Hungarian Notation

The RVBA and R-G conventions are based on the Hungarian conventions for constructing object
names, named for the native country of the inventor, Charles Simonyi. The objective of
Hungarian is to convey information about the object concisely and efficiently. Hungarian takes

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 6 of 33 pages Current as of 02/20/2007 3:14 PM

some getting used to, but once adopted, it quickly becomes second nature. The format of a
Hungarian object name is

[prefixes]tag[BaseName[Suffixes]]
The square brackets indicate optional parts of the object name, which are detailed in Table 3.

Table 3 - Components of a Hungarian Variable Name

Component Meaning

Prefixes Modify the tag to indicate additional information. Prefixes are all lowercase. They
are usually chosen from a standardized list of prefixes, such as the list given
later in this document.

Tag Short set of characters, usually mnemonic, that indicates the type of the object.
The tag is all lowercase. It is usually selected from a standardized list of tags,
such as the list given later in this document.

Tags are optional in loosely typed languages, such as VBScript, Perl, and WIL.

BaseName One or more words that indicate what the object represents. Capitalize the first
letter of each word in the BaseName.

Spaces are forbidden.

Suffixes Additional information about the meaning of the BaseName. Capitalize the first
letter of each word in the Suffix. They are usually picked from a standardized list
of suffixes, such as the list given later in this document.

Tags

Use the techniques described in the following sections to construct tags to indicate the data
type of an object.

VARIABLE TAGS

Use the tags listed in Table 4 for VBA data types. You can also use a specific tag instead of obj
for any data type defined by the host application or one of its objects. (See the section “Host
Application and Component Extensions to the Conventions,” starting at page 17.)

Table 4 - Tags for Variable Types

Tag Object Type Languages

bool

{f, bln}

Boolean VBA, VB, C, C++ (VBScript, Perl, WIL)

byte

{byt}

Byte VBA, VB, (VBScript, Perl, WIL)

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 7 of 33 pages Current as of 02/20/2007 3:14 PM

Tag Object Type Languages

chr Character or array of characters (Note 1) C, C++, (VBScript, Perl, WIL)

cur Currency (Note 2) VBA, VB

date

{dtm}

Date (Note 3) VBA, VB, (C, C++ VBScript, Perl, WIL)

dec Decimal (Note 2) VBA, VB

dbl Double VBA, VB, C, C++ (VBScript, Perl, WIL)

enm Enumeration VBA, VB, C, C++

int Integer (Note 4) VBA, VB, C, C++ (VBScript, Perl, WIL)

lng Long (Note 5) VBA, VB, C, C++ (VBScript, Perl, WIL)

obj Object (Note 6) VBA, VB, C, C++, VBScript, Perl, WIL

o Object (Note 6) VBA, VB, C, C++, VBScript, Perl, WIL

sng

sgl

Single (Note 7) VBA, VB, C, C++, (VBScript, Perl, WIL)

str String (Note 8) VBA, VB, (VBScript, Perl, WIL)

stf String (fixed length) VBA, VB (VBScript, Perl, WIL)

sz Null terminated (ASCIIZ) string) (Note 9) C, C++ (Perl, WIL)

uint Unsigned Integer C, C++

ulng Unsigned Long C, C++

uobj User Defined Object (Note 10) VBA, VB, C, C++, (VBScript, Perl, WIL)

utp User Defined Type (Note 11) VBA, VB, C, C++, (VBScript)

var Variant VBA, VB, (VBScript, Perl, WIL)

xml XML entity (Note 12) VBA, VB, C, C++, (VBScript, Perl, WIL)

Notes
1 Arrays of characters are commonplace in C programs, and take the place of fixed

length strings. I use the array prefix, a, to denote such an entity, and reserve the
unadorned chr prefix for single characters.

2 So far as I know, VB, VBA, and VB.NET are the only common languages that define a
Currency or a Decimal data type. You could get the effect of both in COBOL decades
ago, but only as elements of records.

3 Although I prefer the older form, dtm, because it conveys that a VBA Date variable

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 8 of 33 pages Current as of 02/20/2007 3:14 PM

may contain a date, a time, or a date and a time, out of deference to Greg Reddick, I
list them in the order shown.

There is no date type in C and C++. However, the C runtime library and the Windows
API define many data types; I use the date tag for variables of these types.

4 Integer means something a tad different and elusive in C and C++. Whereas Visual
Basic defines an integer as a variable that holds a whole number between -32,767
and 32,767, C and C++ distinguish between signed and unsigned integers.

In a C program, an unsigned integer can hold a number between 0 and 65,536.
Consequently, I incorporate the uint tag to denote such an entity.

To add more confusion, the definition of C specifies that the size of an integer is
machine dependent, and corresponds to the capacity of a machine register. This
means that, in a Visual C++ 6.0 program, an integer occupies 32 bits (4 bytes) of
storage. However, an examination of the storage reveals that the upper 16 bits are
ignored.

5 Long means something a tad different in C and C++. Whereas Visual Basic defines a
Long as a variable that holds a whole number between -2,147,483,647 and
2,147,483,647, C and C++ distinguish between signed and unsigned long integers.

In a C program, an unsigned long can hold a number between 0 and 4,294,967,296.
Consequently, I incorporate the ulng tag to denote such an entity.

6 In the loosely typed languages, such as VBScript, Perl, and WIL, I prefer the single
character prefix, which is more consistent with the simplified naming convention that
I usually employ.

7 The alternative form, sgl, is carried over from the Hungarian notation, as it is usually
applied to C and C++ code. I prefer this form, although, in deference to Greg
Reddick, I list them in the order shown.

8 This tag is reserved for a Basic String (BSTR), the native format for strings in all
versions of Microsoft Basic of which I am aware. Not surprisingly, the BSTR is also
the format in which strings are passed to and from COM/OLE objects, and is the
format of strings stored in Variant variables.

9 Null terminated strings, also called C strings, are used extensively in C and C++
programs, and are used to pass text, such as the names of files and folders, to
Windows API functions. Visual Basic programmers can usually ignore this for
parameters, since the runtime system converts strings for them.

In this context, null terminated strings includes both ANSI and Unicode strings, which
are terminated by a double null.

10 This is an area in which I deviate significantly from the conventions laid down by
Greg Reddick. Please see Unnecessary Complexity on page 2.

11 As explained under the topic of Unnecessary Complexity, on page 2, I prefer this
generic tag to the custom tags favored by Greg Reddick.

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 9 of 33 pages Current as of 02/20/2007 3:14 PM

12 XML was just beginning to take off in 1999, when Greg Reddick last updated his
convention. In 2006, XML objects merit their own generic tag, which applies to all
XML objects. I have also defined a set of optional tags associated with various types
of XML objects. They are covered in XML Objects, starting on page 32.

Here are several examples.

lngCount
intValue
strInput

You should explicitly declare all variables, each on a line by itself. In VB and VBA, avoid the old-
type declaration characters, such as %, &, and $. They are extraneous if you use the naming
conventions and the as Type clause, and there is no character for most of the data types, such
as Boolean, Currency, and Variant. You should explicitly declare all variables of type Variant
using the As Variant clause, even though it is the default in VBA. For example:

Dim intTotal As Integer
Dim varField As Variant
Dim strName As String

CONSTRUCTING PROPERTY NAMES

Properties of a class present a particular problem: should they follow a naming convention to
indicate the type? To be consistent with the rest of these naming conventions, they should.
However, you may have property names without the tags, especially if the class is to be made
available to customers who may not be familiar with these naming conventions. For example,
COM objects seldom display variable type information in this way. This can sometimes be
annoying to an experienced programmer. Nevertheless, it is a widely accepted standard, and I
follow it in all my class libraries.

COLLECTION TAGS

You treat a collection object with a special tag. You construct the tag using the data type of the
collection followed by the letter s. For example, if you had a collection of Longs, the tag is lngs.
If it was a collection of forms, the tag for the collection is frms. Although, in theory, a collection
can hold objects of different data types, in practice, each of the data types in the collection is
the same. If you must use different data types in a collection, use the objs tag. For example:

intsEntries
frmsCustomerData
objsMisc

CONSTANTS

Constants always have a data type in VBA. Although VBA chooses this data type for you if you
don’t specify it, you should always specify the data type for a constant. Constants declared in
the General Declarations section of a module should always have a scope keyword of Private or

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 10 of 33 pages Current as of 02/20/2007 3:14 PM

Public, and be prefixed by the scope prefixes m or g, respectively. A constant is indicated by
appending the letter c to the end of the data type tag for the constant. For example:

Const intcGray As Integer = 3
Private Const mdblcPi As Double = 3.14159265358979

Although this technique is the recommended method of naming constants, if you are more
concerned about specifying that you are dealing with constants rather than their data type, you
can alternatively use the generic tag con or cnst instead. For example:

Const conPi As Double = 3.14159265358979
Finally, if you are accustomed to following the conventions used in C programming, especially
the Microsoft Windows API, you may prefer to simply name your constants in upper case, like
this.

Const CUSTOMER_FLAG = 536870912
This is my preference, regardless of programming language.

MENU ITEMS

The names of menu items should reflect their position in the menu hierarchy. All menu items
should use the tag mnu, but the BaseName should indicate where in the hierarchy the menu
item falls. Use Sep in the BaseName to indicate a menu separator bar, followed by an ordinal.
For example:

mnuFile (on menu bar)
mnuFileNew (on File popup menu)
mnuFileNewForm (on File New flyout menu)
mnuFileNewReport (on File New flyout menu)
mnuFileSep1 (first separator bar on file popup menu)
mnuFileSaveAs (on File popup menu)
mnuFileSep2 (second separator bar on file popup menu)
mnuFileExit (on File popup menu)
mnuEdit (on menu bar)

CREATING DATA TYPES

VBA gives you three ways to create new data types: enumerated types, classes, and user-
defined types. In each case, you may need to invent a new tag that represents the data type
that you create.

Enumerated types
Related groups of constants of the long data type should be made an enumerated type. Invent
a tag for the type, append a “c,” and then define the enumerated constants using that tag, or
use the generic enm tag,. Because the name used in the Enum line is seen in the object

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 11 of 33 pages Current as of 02/20/2007 3:14 PM

browser, you can add a BaseName to the tag to spell out the abbreviation indicated by the tag.
For example:

Public Enum ervcErrorValue
ervcInvalidType = 205
ervcValueOutOfBounds

End Enum
The BaseName should be singular, so that the enumerated type should be ervcErrorValue,
not ervcErrorValues. The tag that you invent for enumerated types can then be used for
variables that can contain values of that type. For example:

Dim erv As ervcErrorValue
Private Sub Example(ByVal ervCur As ervcErrorValue)

While VBA, C, and C++ only provides enumerated types of groups of the long type, you can still
create groups of constants of other types. Just create a set of constant definitions using an
invented tag. For example:

Public Const estcError205 As String = "Invalid type"
Public Const estcError206 As String = "Value out of bounds"

Unfortunately, because this technique doesn’t actually create a new type, you don’t get the
benefit of the compiler performing type checking for you. You create variables that will hold
constants using a similar syntax to variables meant to hold instances of enumerated types. For
example:

Dim estError As String

TAGS FOR CLASSES AND USER-DEFINED TYPES

This is an area in which I deviate significantly from the conventions laid down by Greg Reddick.
Please see Unnecessary Complexity on page 2. For consistency, I retained this heading,
however.

I use the simple prefixes listed in Table 5 for user defined objects and classes.

Table 5 - Prefixes for User Defined Objects and Classes

Prefix Description

uobj User defined class name. I use this in VBA and VB.

o For consistency, I use the abbreviated prefix in Perl, VBScript, and other loosely
typed languages. Of the languages in which I have used the abbreviated tag, Perl is
the only one that lends itself to defining your own classes. Although VBScript has the
Class keyword, its support of user defined classes seems pretty weak. Although I am
sure that they exist, I have never seen a Visual Basic script that defined its own
classes.

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 12 of 33 pages Current as of 02/20/2007 3:14 PM

Prefix Description

uo This alternative form can be used in loosely typed languages to distinguish user
defined objects from predefined or otherwise packaged objects.

POLYMORPHISM

In VBA, you use the Implements statement to derive classes from a base class. The derived
class should use the same tag as the base class. The derived classes, though, should use a
different BaseName from the base class. For example:

anmAnimal (base class)
anmZebra (derived class of anmAnimal)
anmElephant (derived class of anmAnimal)

This logic of naming derived classes is used with forms, which are all derived from the pre-
defined Form base class and use the frm tag. If a variable is defined to be of the type of the
base class, then use the tag, as usual. For example:

Dim anmArbitrary As anmAnimal
Dim frmNew As Form

On the other hand, if you define a variable as an instance of a derived class, include the
complete derived class name in the variable name. For example:

Dim anmZebraInstance As anmZebra
Dim anmElephantExample As anmElephant
Dim frmCustomerData As frmCustomer

CONSTRUCTING PROCEDURES

VBA procedures require you to name various items: procedure names, parameters, and labels.
These objects are described in the following sections. I deviate significantly from the RVBA
conventions.

Constructing Procedure Names
VBA, VB. NET, and other languages name event procedures, and you cannot change them. You
should use the capitalization defined by the system. For user-defined procedure names,
capitalize the first letter of each word in the name. For example:

cmdOK_Click
GetTitleBarString
PerformInitialization

Procedures should always have a scope keyword, Public or Private, when they are declared. For
example:

Public Function GetTitleBarString() As String
Private Sub PerformInitialization

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 13 of 33 pages Current as of 02/20/2007 3:14 PM

Unless the functions will be exposed to users who may not be accustomed to these
conventions, their names should be tagged to indicate the type of variable that they return. For
example:

Public Function dblAreaOfCircle(pdblRadius as Double) as Double

Note the use of the as Double clause to specify the type of data that the function returns.
Just as variables should always have an explicit type, so should functions. Likewise, functions
that return a Variant should say so, even though this is the default for VB and VBA. Sub
procedures, which return nothing, should have no type prefix. Absence of a prefix reinforces
their status as Sub procedures.

You should prefix all parameters in a procedure definition with ByVal or ByRef, even though
ByRef is optional and redundant. Procedure parameters are named the same as simple
variables of the same type, except that the name is prefixed as shown in Table 6 - Prefixes for
Parameter Name.

Table 6 - Prefixes for Parameter Name

Prefix Description

p Parameter, conveying no information about whether passed by value or reference

pr Parameter passed by reference, allowing changes to flow back into the caller’s
address space

pv Parameter passed by value, confining changes to the current procedure

For example:

Public Sub TestValue(ByVal pvintInput As Integer, _
ByRef prlngOutput As Long)

Private Function GetReturnValue(ByVal pvstrKey As String, _
ByRef prgph As Glyph) As Boolean

Procedure Labels
Procedure Labels are named using upper and lower case, capitalizing the first letter of each
word. For example:

MyProcedure:
MyProcedure_Err:
MyProcedure_End:

While Greg Reddic specifies prefixes for procedure names, I specify suffixes. Please see Naming
of Program Labels on page 2 for an explanation of my reason for deviating.

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 14 of 33 pages Current as of 02/20/2007 3:14 PM

Table 7 - Suffixes for Procedure Labels

Suffix Description

_Err User defined object.

I used to use obj, but have reserved this prefix for late bound object variables.

_nnn Internal label, used for short local jumps.

The value of nnn is a number, starting with 010, and incrementing by 10. See the
text below for more about this.

_End Variant, which can hold anything, even an object reference, and can hold different
types of data throughout its lifetime

I apply the a prefix to this type to denote an array of variants.

Although few procedures should need them, internal labels should be assigned in such a way
that additional labels can be inserted between existing labels, without the need to renumber
existing labels.

♦ By numbering the labels sequentially, they appear in sorted cross references in their order
of appearance in the code. Also, if you see a label with a suffix of 020, you know that
there is at least one other label above it.

♦ This numbering convention is inspired by the naming conventions that we used at least as
long ago as the late 1970’s to name labels in COBOL programs.

PREFIXES

Prefixes modify an object tag to indicate more information about an object.

Arrays of Objects Prefix
Arrays of an object type use the prefix a. For example:

aintFontSizes
astrNames

Index Prefix
You indicate an index into an array by the prefix i, and for consistency the data type should
always be a long. You may also use the index prefix to index into other enumerated objects,
such as a collection of user-defined classes. For example:

iaintFontSizes
iastrNames
igphsGlyphCollection

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 15 of 33 pages Current as of 02/20/2007 3:14 PM

Prefixes for Scope and Lifetime
Three levels of scope exist for each variable in VBA: Public, Private, and Local. A variable also
has a lifetime of the current procedure, the lifetime of the object in which it is defined, or the
lifetime of the procedure that called the procedure that returns it. Use the prefixes in .Table 8.

Table 8 - Prefixes for Variable Scope, Lifetime, and How Passed

Tag Object Type Languages

(None) Local variable, procedure-level lifetime,
declared with “Dim”

All

s Local variable, object lifetime, declared
with “Static”

VBA, VB, C. C++ (VBScript, Perl, WIL)

m Private (module) variable, object lifetime,
declared with “Private”

VBA, VB, C. C++ (VBScript, Perl, WIL)

g Public (global) variable, object lifetime,
declared with “Public”

VBA, VB, C. C++ (VBScript, Perl, WIL)

r Value returned by function C, C++, Perl, WIL

You also use the “m” and “g” constants with other objects, such as constants, to indicate their
scope. For example:

intLocalVariable
mintPrivateVariable
gintPublicVariable
mdblcPi

You may follow the prefix with an underscore, so that the examples above would look like this.

m_intPrivateVariable
g_intPublicVariable
m_dblcPi

VBA allows several type declaration words for backward compatibility. The older keyword
“Global” should always be replaced by “Public,” and the “Dim” keyword in the General
Declarations section should be replaced by “Private.” These conventions carry forward into the
Microsoft .NET languages, suggesting that the older keywords are deprecated.

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 16 of 33 pages Current as of 02/20/2007 3:14 PM

Other Prefixes

Table 9 - Other commonly-used prefixes

Prefix Object Type Languages

c

cnt

Count of some object type All

h Handle to a Windows object (Note 1) All except Perl

r Value returned by a function (Note 2) All except VB, VBA, and VBScript

Notes
1 The only type of handle known to Perl is a filehandle, and these are specified in

upper case. So far as I am aware, this is a requirement of the language. In any case,
it is a globally accepted coding standard among Perl programmers.

Further, in Perl, the h prefix is reserved for hashes, or associative arrays.

2 All dialects of the Basic programming language, being descendants of Fortran, require
that the return value be assigned to a variable with the sane name as the function.

Although I have been programming in Basic since 1978, and learned Fortran before I
learned Basic, this linguistic quirk still bothers me, as the return value is implicitly
defined. (However, from a theoretical perspective, this syntax rule is quite logical.)
Indeed, it is a syntax error to define a variable of the sane name as the function
anywhere within the procedure itself, or within any procedure or module to which the
function is visible.

SUFFIXES

Suffixes modify the base name of an object, indicating additional information about a variable.
You will likely create your own suffixes that are specific to your development work. Table 10
lists some generic VBA suffixes.

Table 10 - Generic VBA Suffices

Suffix Description

Min The absolute first element in an array or other kind of list

First The first element to be used in an array or list during the current operation

Last The last element to be used in an array or list during the current operation

Max The absolutely last element in an array or other kind of list

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 17 of 33 pages Current as of 02/20/2007 3:14 PM

Suffix Description

Cnt Used with database elements to indicate that the item is a Counter. Counter fields are
incremented by the system and are numbers of either type Long or type Replication
Id.

Idx The item is an index. This provides an alternative to the i prefix for array and
collection indices, discussed above.

Here are some examples:

iastrNamesMin
iastrNamesMax
iaintFontSizesFirst
igphsGlyphCollectionLast
lngCustomerIdCnt
varOrderIdCnt

FILE NAMES

When naming items stored on the disk, no tag is needed because the extension already gives
the object type. For example:

Test.Frm (frmTest form)
Globals.Bas (globals module)
Glyph.Cls (gphGlyph class module)

Host Application and Component Extensions to the Conventions

Each host application for VBA, as well as each component that can be installed, has a set of
objects it can use. This section defines tags for the objects in the most widely used host
applications and components. These extensions are appropriate for use in any language that
hosts an object of the types discussed below.

MICROSOFT ACCESS 2000, VERSION 9.0 (AND LATER) OBJECTS

Table 11 lists Microsoft Access object variable tags. Besides being used in code to refer to
these object types, these same tags are used to name these kinds of objects in the designers.

Table 11 - Microsoft Access object variable tags.

Tag Description

aob AccessObject

aops AccessObjectProperties

aop AccessObjectProperty

app Application

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 18 of 33 pages Current as of 02/20/2007 3:14 PM

Tag Description

bfr BoundObjectFrame

cbk CheckBox

cbo ComboBox

cmd CommandButton

ctl Control

ctls Controls (collection)

ocx CustomControl

dap DataAccessPage

dcm DoCmd

frm Form

fcd FormatCondition

fcds FormatConditions (collection)

frms Forms (collection)

grl GroupLevel

hyp Hyperlink

img Image

lbl Label

lin

{lne}

Line

lst

{lbo]

ListBox

bas

{mod}

Module

ole ObjectFrame

opt OptionButton

fra OptionGroup (frame)

brk PageBreak

pal PaletteButton

prps Properties

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 19 of 33 pages Current as of 02/20/2007 3:14 PM

Tag Description

shp Rectangle

ref Reference

refs References

rpt Report

rpts Reports

scr Screen

sec Section

sfr Subform

srp SubReport

tab TabControl

txt TextBox

tgl ToggleButton

Some examples:

txtName
lblInput

For ActiveX custom controls, you can use the tag ocx as specified in Table 11 above or more
specific object tags that are listed later in this document in Tables 14 and 15. For an ActiveX
control that does not appear in Tables 14 or 15, you can either use ocx or invent a new tag.

MICROSOFT DAO 3.6 OBJECTS

Microsoft DAO is the programmatic interface to the Jet database engine shared by Access,
Visual Basic, and Visual C++. The tags for DAO 3.6 objects are shown in Table 12.

Table 12 – Microsoft Data Access Objects (DAO) object tags

Tag Description

cnt Container

cnts Containers

db Database

dbs Databases (collection)

dbe DBEngine

doc Document

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 20 of 33 pages Current as of 02/20/2007 3:14 PM

Tag Description

docs Documents

err Error

errs Errors

fld Field

flds Fields

grp Group

grps Groups

idx Index

idxs Indexes

prm Parameter

perm Parameters

pdbe PrivDBEngine

prp Property

prps Properties

qry QueryDef

qrys QueryDefs

rst Recordset

rsts Recordsets

rel Relation

rels Relations

tbl TableDef

tbls TableDefs

usr User

usrs Users

wrk Workspace

wrks Workspaces

Here are some examples:

rstCustomers
idxPrimaryKey

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 21 of 33 pages Current as of 02/20/2007 3:14 PM

Table 13 lists the tags used to identify types of objects in a Microsoft Access database.

Table 13 – Microsoft Access Database Object Tags

Tag Description

tbl Table

qry Query

frm Form

rpt Report

mcr Macro

bas

{mod}

Module

dap DataAccessPage

If you wish, you can use tags that are more exact or suffixes to identify the purpose and type of
a database object. If you use the suffix, use the tag given from Table 13 to indicate the type.
Use either the tag or the suffix along with the more general tag, but not both. The tags and
suffixes are shown in Table 14

Table 14 - Specific Object Tags and Suffixes for Microsoft Access Database Objects

Tag Suffix Object Type

tlkp Lookup Table (lookup)

qsel (none) Query (select)

qapp Append Query (append)

qztb XTAB Query (crosstab)

qddl DDL Query (DDL)

qdel Delete Query (delete)

qflt Filter Query (filter)

qlkp Lookup Query (lookup)

qmak MakeTable Query (make table)

qspt PassThru Query (SQL pass-through)

qtot Totals Query (totals)

quni Union Query (union)

fdlg Dlg Form (dialog)

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 22 of 33 pages Current as of 02/20/2007 3:14 PM

Tag Suffix Object Type

fmnu Mnu Form (menu)

fmsg Msg Form (message)

fsfr SubForm Form (subform)

rsrp SubReport Form ((subreport)

mmnu Mnu Macro (menu)

Here are some examples:

tblValidNamesLookup
tlkpValidNames
fmsgError
mmnuFileMnu

When naming objects in a database, do not use spaces. Instead, capitalize the first letter of
each word. For example, instead of Quarterly Sales Values Table, use tblQuarterlySalesValues.

There is strong debate over whether fields in a tables should have tags. Whether you use them
is up to you. However, if you do use them, use the tags from Table 15.

Table 15 – Microsoft Access Table Field Name Tags (if you decide to use them)

Tag Description

autoi

{lng}

Autoincrementing (either sequential or random) Long (used with the suffix Cnt) (Note
1)

bin Binary

byt

{byte }

Byte (Note 2)

cur Currency

dtm

{date}

Date/Time (Note 3)

dbl Double

guid Globally unique identified (GUID) used for replication AutoIncrement fields

int Integer

lng Long

mem Memo

ole OLE

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 23 of 33 pages Current as of 02/20/2007 3:14 PM

Tag Description

sng

sgl

Single (Note 4)

str Text (string)

bool Yes/No

Notes
1 The Reddick convention specifies lng, which I find a bit confusing, as it suggests that

you can set the value in code. Although I leave his lng prefix, I prefer the less
ambiguous autoi prefix.

2 The Reddick convention specifies byte, which, although quite clear, is longer than
the majority of the prefixes. Instead, I prefer the more consistent, equally
communicative, byt.

3 For the same reasons that I favor dtm for program variables that contain dates, I
prefer it for table column (field) names.

4 The alternative form, sgl, is carried over from the Hungarian notation, as it is usually
applied to C and C++ code. I prefer this form, although, in deference to Greg
Reddick, I list them in the order shown.

Whatever you do, be consistent.

MICROSOFT VISUAL BASIC 6.0 OBJECTS

Table 16 shows the tags for Visual Basic 6.0 objects. Since most of these objects also exist in
Microsoft Access, and can be treated alike, I did my best to use identical prefixes. This lead to
one deviation from the RVBA convention, which is noted.

Table 16 - Microsoft Visual Basic 6.0 Object Tags

Tag Description

app App

chk CheckBox

clp Clipboard

cbo ComboBox

cmd CommandButton

ctl Control

dat Data

dir DirListBox

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 24 of 33 pages Current as of 02/20/2007 3:14 PM

Tag Description

drv DriveListBox

fil FileListBox

frm Form

fra Frame

glb Global

hsb HscrollBar

img Image

lbl Label

lics Licenses

lin Line

lst

{lbo]

Listbox (Note 1)

mdi MDIForm

mnu Menu

ole OLE

opt OptionButton

pic PictureBox

prt Printer

prp PropertyPage

scr Screen

shp Shape

txt Textbox

uctl UserControl

udoc UserDocument

vsb VscrollBar

Notes
1 Since there is no difference between this entity and the one covered by Table 11, on

page 17, I assigned the same prefixes. As I did above, I included the lbo prefix,
marking it as a “grandfathred” prefix. Incidentially, since it is the first prefix that I

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 25 of 33 pages Current as of 02/20/2007 3:14 PM

learned, and the one that makes the most sense to me, I still use it.

MICROSOFT ACTIVEX DATA OBJECTS 2.1 (AND LATER) TAGS

Office 2000 provides version 2.1 of the ActiveX Data Objects library. Table 17 lists the
recommended tags for this version of ADO.

Note: Many of the ADO, ADOX, and JRO tags overlap with existing DAO tags. Make sure you
include the object library name in all references in your code, so there’s never any possibility of
confusion. For example, use

Dim rst As ADODB.Recordset
or

Dim cat As ADOX.Catalog
rather than using the object types without the library name. This will not only make your code
more explicit and avoid confusion about the source of the object, but will also make your code
run a bit faster.

Table 17 - Microsoft ADO 2.1 Object Tags

Tag Description

cmn

{cmd}

Command

cnn

{cnx}

Connection

err Error

errs Errors

fld Field

flds Fields

prm Parameter

prms Parameters

prps Properties

prp Property

rst Recordset

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 26 of 33 pages Current as of 02/20/2007 3:14 PM

MICROSOFT ADO EXT. 2.1 (AND LATER) FOR DDL AND SECURITY (ADOX) TAGS

In order to support DDL and security objects within Jet database, Microsoft provides ADOX, an
additional ADO library of objects. Table 18lists tags for the ADOX objects.

Table 18 - Microsoft ADOX Object Tags

Tag Description

cat Catalog

clm Column

clms Columns

cmd Command

grp Group

grps Groups

idx Index

idxs Indexes

key Key

keys Keys

prc Procedure

prcs Procedures

prp Property

prps Properties

tbl Table

tbls Tables

usr User

usrs Users

vw View

vws Views

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 27 of 33 pages Current as of 02/20/2007 3:14 PM

MICROSOFT JET AND REPLICATION OBJECTS 2.1 (AND LATER)

In order to support Jet’s replication features, ADO provides another library (JRO). Table 19
lists suggested tags for the JRO objects.

Table 19 - Microsoft JRO Object Tags

Tag Description

flt Filter

flts Filters

jet JetEngine

rpl Replica

MICROSOFT SQL SERVER AND MICROSOFT DATA ENGINE (MSDE) OBJECTS

Table 20 lists tags for Microsoft SQL Server and the Microsoft Data Engine (a limited-
connection version of SQL Server 7) objects.

Table 20 - SQL Server/MSDE Object Tags

Tag Description

tbl Table

proc

sp_

sp

Stored Procedure (Note 1)

trg Trigger

qry View

dgm Database Diagram

pk Primary Key

fk Foreign Key

idx Other (non-key) index

rul Check Constraint

def Default

Notes
1 The sp_ and sp prefixes are commonly used. Since both are as logical as is proc, I

include them here.

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 28 of 33 pages Current as of 02/20/2007 3:14 PM

MICROSOFT SQL SERVER TABLE COLUMN (FIELD) NAMES

Table 21, on page 28 lists prefixes for the Microsoft SQL Server data types defined at
http://msdn2.microsoft.com/en-us/library/aa258271(SQL.80).aspx. Fields are listed in the order
shown at that page, as of 20 February 2007. Where applicable, these prefixes follow the pattern
established for tagging of similar objects in Microsoft Access tables and program variables. In a
few cases, alternative prefixes are shown in square brackets.

Table 21 - Microsoft SQL Server Table Column (Field) Name Prefixes

Tag Description

bint BigInt

int Int

sint SmallInt

tint TinyInt

Bit

[bln]

[bool]

Bit

dec Decimal

num Numeric

mny Money

smny SmallMoney

flt

[fl]

Float

real

[rl]

Real

dtm DateTime

sdt SmallDateTime

chr

[char]

Char

vchr VarChar

txt Text

nchr Nchar

nvchr NVarChar

http://msdn2.microsoft.com/en-us/library/aa258271(SQL.80).aspx

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 29 of 33 pages Current as of 02/20/2007 3:14 PM

Tag Description

ntxt Ntext

bin Binary

vbin VarBinary

img Image

csr Cursor

svar SQL_Variant

rslt Table (stored result set)

tms TimeStamp

guid UniqueIdentifier

MICROSOFT COMMON CONTROL OBJECTS

Windows 95 and Windows NT have a set of common controls that are accessible from VBA,
C++, and many other programming languages. Table 22 lists the tags for objects created
using these controls.

Table 22 - Microsoft Common Control Object Tags

Tag Description

ani Animation

btn Button (Toolbar)

bmn ButtonMenu (Toolbar)

bmns ButtonMenus (Toolbar)

bnd Band (Coolbar)

bnds Bands (Coolbar)

bnp BandsPage (CoolBar)

btns Buttons (Toolbar)

cbr Coolbar

cbp CoolBarPage (CoolBar)

hdr ColumnHeader (ListView)

hdrs ColumnHeaders (ListView)

cbi ComboItems (ImageCombo)

ctls Controls (Note 1)

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 30 of 33 pages Current as of 02/20/2007 3:14 PM

Tag Description

dto DataObject

dtf DataObjectFiles

dtp DTPicker

fsb FlatScrollBar

imc ImageCombo

iml ImageList

lim ListImage

lims ListImages

lit ListItem (ListView)

lits ListItems (ListView)

lsi ListSubItem (ListView)

lsis ListSubItems (ListView)

lvw ListView

mvw MonthView

nod Node (TreeView)

nods Nodes (TreeView)

pnl Panel (Status Bar)

pnls Panels (Status Bar)

prb ProgressBar

sld Slider

sbr StatusBar

tab Tab (Tab Strip)

tabs Tabs (Tab Strip)

tbs TabStrip

tbr Toolbar

tvw TreeView

udn UpDown

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 31 of 33 pages Current as of 02/20/2007 3:14 PM

Notes
1 To maintain consistency with the naming of Microsoft Access and Visual Basic 6.0

controls, I changed this from ctl to ctls.

OTHER CUSTOM CONTROLS AND OBJECTS

Finally, Table 23 lists the tags for other commonly used custom controls and objects.

Table 23 - Tags for Commonly-used Custom Controls

Tag Description

cdl CommonDialog (Common Dialog)

dbc DBCombo (Data Bound Combo Box)

dbg DBGrid (Data Bound Grid)

dls DBList (Data Bound List Box)

gau Gauge (Gauge)

gph Graph (Graph)

grd Grid (grid)

msg MAPIMessages (Messaging API Message Control)

ses MAPISession (Messaging API Session Control)

msk MaskEdBox (Masked Edit Textbox)

key

mhs

MhState (Key State) (Note 1)

mmc MMControl (Multimedia Control)

com MSComm (Communication Port)

out Outline (Outline Control)

pcl PictureClip (Picture Clip Control)

rtf RichTextBox (Rich Textbox)

spn SpinButton (Spin Button)

Notes
1 Although Reddick assigns the prefix key, I prefer the unambiguous mhs.

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 32 of 33 pages Current as of 02/20/2007 3:14 PM

XML OBJECTS

Because they have come into such wide use, the objects exposed by the MSXMLx.DLL libraries
merit a place in any modern naming convention. Table 24 lists the prefixes.

Table 24 - XML Object Prefixes

Tag Description

xmlcd XML CDATA element

xmld XML DOMDocument

xmlds XML Data Source

xmle XML Element tag

xmlh XML HTTP Object

xmln Generic XML Node

xmlpi XML Processing Instruction

xmls XML Schema object

xmlsx XML SAX object

xmlt XML Template

Summary

Using a naming convention requires a considerable initial effort on your part. The payoff comes
when either you or another programmer has to revisit your code later. Using the conventions
given here will make your code more readable and maintainable.

Greg Reddick is the President of Xoc Software, a software development company
developing programs in Visual Basic, Microsoft Access, C/C++, and for the web. He leads
training seminars in Visual Basic for Application Developers Training Company (AppDev). In a
previous life, he worked for four years on the Access development team at Microsoft. Greg can
be reached at grr@xoc.net or from the Xoc Software web site, http://www.xoc.net.

David Gray is President and Chief Wizard of WizardWrx, a software development and
consulting company that applies numerous programming languages and techniques to solve
difficult business problems. David is proficient in VB, VBA, Perl, WIL (WinBatch), and other
languages, and uses C and C++ to create advanced libraries for encryption and tight
integration with Microsoft Windows. David can be reached at dgray@wizardwrx.com or through
the WizardWrx Web site at http://www.wizardwrx.com/.

mailto:grr@xoc.net
http://www.xoc.net
mailto:dgray@wizardwrx.com
http://www.wizardwrx.com/

THE REDDICK-GRAY UNIFIED NAMING CONVENTIONS

 VERSION 1.01

 File C:\DOCUMENTS AND SETTINGS\DAG\MY DOCUMENTS\REDDICK-GRAY_NAMING_CONVENTIONS_1_01.DOC
Page 33 of 33 pages Current as of 02/20/2007 3:14 PM

REVISION HISTORY
Version Date Comment

1.00 2006/09/11 First published version

1.01 2007/02/20 ♦ Add prefixes for Microsoft SQL Server table column (field) names.

♦ Add missing table captions.

♦ Add missing headings on tables that span multiple pages.

♦ General cosmetic cleanup.

		2007-02-20T15:45:00-0600
	Wizard Wells, Texas, USA
	David A. Gray
	I am the author of this document

