
11/28/2010

1

Secure Software DevelopmentSecure Software Development

Chapter 18

Objectives

 Describe how secure coding can be incorporated into the
ft d l tsoftware development process.

 List the major types of coding errors and their root cause.

 Describe good software development practices and explain
how they impact application security.

 Describe how using a software development process enforces
security inclusion in a project.

11/28/2010

2

Compromises of Information

 Commonly caused by the exploitation of programming defects

 Allows attackers to affect the confidentiality, integrity, and
availability of information assetsavailability of information assets

 Security of information assets rests on the integrity and security of its
software

 Minor defects and flaws in programming lead to adverse
consequences, such as the:

 Exploitation of buffer overflows Exploitation of buffer overflows

 Execution of remote procedure calls

Software Assurance as National Policy

 Improving software assurance practice is a national priority

 Widespread problem that defects pose for protection of the critical
information infrastructureinformation infrastructure

 Software enables everything from our national defense and
financial systems to the controls that regulate our pipelines and
nuclear plants

11/28/2010

3

What are the Aims of Software Assurance?

 Software assurance identifies and eliminates exploitable defects in the
development, acquisition, and operation of software

 Software assurance guarantees that the products are:
 Trustworthy
 Predictable
 Conformant

 Ensuring these qualities can be difficult because of the:
 Complexity of modern computer systems
 Increasing tendency for global outsourcing

Pair of Distinctions

 Vulnerabilities in software result from defects in specification, design,
or programming

 Introduced at three points in the process: Introduced at three points in the process:

 Design and development

 Distribution

 Updates and patches

 Software process

l d i d fi d b f Development and sustainment process defined by a set of
commonly agreed-on practices

 Intended to build or enhance a software product

11/28/2010

4

Software Process

 Software is a set of instructions that make the computer useful

 Programmers write those instructions using a coding or
programming languageprogramming language

 Defects originate at different stages that include:

 Failure to specify the product correctly

 Incorrect design

 Poor programming practice

d i i Code-writing

 Ineffective or inadequate review and testing

Software engineering

 Software engineering

 The systematic development of software.

U i l i t th ft k l d f Universal requirement - the software works properly and performs
the desired functions.

 Software engineering fits as many requirements as possible into a
project management schedule timeline.

 Analysts and developers work hard to get the functional elements
correctcorrect.

 However, the issue of non-functional requirements gets neglected
entirely.

11/28/2010

5

Software engineering

 Security in Software Engineering:

 Traditionally, security is an add-on item incorporated after the
functional requirements have been metfunctional requirements have been met.

 Not viewed as an integral part of the software development
lifecycle process.

 Security has been described as a non-functional requirement.

 Usually placed into a category of secondary importance.

Now the trend is changing Now the trend is changing

 Trust is built upon an expectation that the software will work and
continue to meet the requirements, and not change its behavior or
functionality because of outside influences.

Software Engineering Process

 The challenge - Integration

 There are two elements to achieve this objective.

Fi t th i l i f it i t d i t First, the inclusion of security requirements and measures into
the specific process model being used.

 Second, the use of secure coding methods to prevent any
possibility of security failures in the software being designed.

11/28/2010

6

Software Engineering ProcessSoftware Engineering Process

 From requirements to system architecture to coding to testing, security is
an imbedded property in all aspects of the process

 Several specific models have been developed to make the process of
programming more effective and efficient.

 Some major models include:

 The waterfall model

 The spiral model

 The evolutionary model

 The agile model

 The secure development lifecycle model (SDL)

Process Models

 Software Engineering Process Models

 The waterfall model.

 Characterized by a multistep process where the steps follow
h th i li f hi lik teach other in a linear, one-way fashion, like water over a

waterfall.

 The spiral model.

 Steps in phases that execute in a spiral fashion, repeating at
different levels with each revolution of the model.

 The evolutionary model

it ti d l d i d t bl th t ti f an iterative model designed to enable the construction of
increasingly complex versions of a project.

 The agile model

 Iterative development, where requirements and solutions evolve
through an ongoing collaboration between self-organizing cross-
functional teams.

11/28/2010

7

Process Models

 Independent of the method used, the process is about completing the
requirements.

 Opportunities exist independent of the model used to includepp p

 Security in the requirements process

 Security awareness during architectural design, coding, and
testing.

 The secure development model (SDL)
 From a secure coding perspective a secure development From a secure coding perspective, a secure development

lifecycle (SDL) model is essential to success.

 From requirements to system architecture to coding to testing,
security is an embedded property in all aspects of the process.

Secure Development LifecycleSecure Development Lifecycle

 Firms have recognized the need for secure code Firms have recognized the need for secure code.

 Security should be an issue that is addressed throughout the
development process.

 The SDL accounts for security in each of its four major phases:
 Requirements phase

 Design phase

 Coding phase

 Testing phase

11/28/2010

8

SDL Requirements PhaseSDL Requirements Phase

 The requirements phase is the first step in a software development
process model.

fi h ifi i f h j Define the specific requirements of the project.
 The details for all end product requirements are documented

 Ensure the resultant software functions as desired.

 Items specifically regarding security should be enumerated during this
step.

 Outcome of this phase is a document guiding security throughout the rest
f thof the process.

 Adding security later tends to cost exponentially more than implementing
it from the start.

SDL Requirements PhaseSDL Requirements Phase

R i t h ld d fi ifi it i t if th i Requirements should define specific security requirements if there is
any expectation of them being designed into the project

 The requirements process is key to including security in software
development.

 Security-related items enumerated during the requirements process
are visible throughout the rest of the software development processare visible throughout the rest of the software development process.

11/28/2010

9

 Analysis of security and privacy risk

 Authentication and password management

Security Considerations for Requirements Phase

 Audit logging and analysis

 Authorization and role management

 Code integrity and validation testing

 Cryptography and key management

 Data validation and sanitization

 Network and data security

 Ongoing education and awareness

 Team staffing requirements

 Third-party component analysis

SDL Design PhaseSDL Design Phase

 Coding without designing first is like building a house without using
plans.

This might work fine on small projects but as the scope grows so do This might work fine on small projects, but as the scope grows, so do
complexity and the opportunity for failure.

 Becomes more important as scope grows since complexity and chance
of failure also grow.

 Design is a process involving trade-offs and choices,
 The criteria used during the design decisions can have lasting impacts

i t t tiinto program construction

 Two secure coding principle are applied during the design phase:
 Minimizing the attack surface area

 Threat modeling

11/28/2010

10

Threat Modeling and Surface Area Threat Modeling and Surface Area
MinimizationMinimization

 Attack surface minimization
 A strategy to reduce the place where code can be attacked.

 Threat modeling
 The process of analyzing threats and their effects on software in a

granular fashion.

 A communication tool designed to communicate to everyone on the
development team the threats and dangers facing the code.

 The output of the threat model process is a compilation of threats and
how they interact with the software.

 This information is communicated across the design and coding team,
so that potential weaknesses can be mitigated before the software is
released.

Threat Modeling Steps

1. Define scope
1. Communicate what is in scope and out of scope with respect to the

threat modeling effort This includes both attacks and softwarethreat modeling effort. This includes both attacks and software
components.

2. Enumerate assets
1. List all of the component parts of the software being examined

3. Decompose assets
1. Break apart the software into small subsystems composed of

i t d t t Thi i t i lif d t fl l i d tinputs and outputs. This is to simplify data flow analysis and to
capture internal entry points.

4. Enumerate threats
1. List all the threats to the software.

Important

11/28/2010

11

Threat Modeling Steps

5. Classify threats
1. Classify the threats by their mode of operation

6. Associate threats to assets
1. Connect specific threats and modes to specific software

subsystems

7. Score and rank threats
5. Score each specific threat–asset pair and then rank them from

most dangerous to least dangerous.

8 Create threat trees8. Create threat trees
5. Create a graphical representation of the required elements for an

attack vector

9. Determine and score mitigation
5. Score the mitigation efforts associated with each attack vector

Important

Microsoft Threat Modeling Tool

http://www.microsoft.com/security/sdl/getstarted/threatmodeling.aspx

11/28/2010

12

SDL Coding PhaseSDL Coding Phase

 Phase where the design is implemented.

 Software is checked for vulnerabilities using enumerations of Software is checked for vulnerabilities using enumerations of
known software vulnerabilities:
 Common Weakness Enumeration (CWE)

 Common Vulnerabilities and Exposures (CVE)

 Manual review is also used to reduce vulnerabilities.

 Static code analysis tools may be used to search software code for
possible errors.

Major Programming ErrorsMajor Programming Errors

 SANS & MITRE maintain a list of the 25 most dangerous
programming errors in three categories:

i i b Insecure interaction between components

 Risky resource management

 Porous defenses

http://cwe.mitre.org/top25

 Common problems with erroneous code include:

– Buffer overflows

– Improper input handling

– Improper output handling

– Least privilege problems

– Injection vulnerabilities

– Cryptographic failures

– Language specific failures

11/28/2010

13

Buffer Overflows

 These vulnerabilities are relatively simple. The buffer used to hold
program input is overwritten with data larger than the buffer.

 The root cause of this vulnerability is a mixture of two things: The root cause of this vulnerability is a mixture of two things:

 Poor programming practice

 Programming language weaknesses

Nearly half of all software exploits stem from buffer overflow.

CERT/CC at Carnegie Mellon University

Buffer Overflows

 Nearly half of all exploits of computer programs stem
historically from some form of buffer overflowhistorically from some form of buffer overflow.

 The generic classification of buffer overflows includes
many variants:
 Static buffer overruns

 Indexing errors

Format string bugs Format string bugs

 Unicode and ANSI buffer size mismatches

 Heap overruns

11/28/2010

14

Countering Buffer Overflows

 Step 1 - Write solid code.

 Regardless of the language used or source of input, treat all input
from outside a function as hostilefrom outside a function as hostile.

 Validate all inputs as if they were hostile or were an attempt to
force a buffer overflow.

 Step 2 - Proper string handling.

 Strings are a common form of input

Because many string handling functions have no built in checks for Because many string-handling functions have no built-in checks for
string length, strings are frequently the source of exploitable buffer
overflows

 String handling is common in programs and is the source of a large
number of known buffer overflow vulnerabilities.

Improper Input Handling

 Users have the ability to manipulate inputs

 It is up to the programmer to appropriately handle the input to
prevent malicious entries from having an effect.

 In today’s computing environment, a wide range of character
sets is used.
 Unicode allows multi-language support.

 Character codesets allow multi-language capability.

 Various encoding schemes, such as hex encoding are supported to
allow diverse inputs. p

 The net result of all these input methods is that there are
numerous ways to create the same input to a program.

 How to deal- Canonicalization

11/28/2010

15

 Canonicalization

 Process by which application programs manipulate strings to a base
form creating a foundational representation of the inputform, creating a foundational representation of the input.

 abbreviated c14n, where 14 represents the number of letters
between the C and the N

 Inputs to a web application may be processed by multiple applications,
such as web server, application server, and database server, each with
its own parsers to resolve appropriate canonicalization issuesp pp p

 Results in Canonicalization errors

 If the error checking routine occurs prior to resolution to canonical
form, then issues may be missed

Improper Output Handling

 Proper string handling.

 A second, and equally important, line of defense.

 String handling is a common event in programs

 String-handling functions are the source of a large number of known
buffer-overflow vulnerabilities.

 To resolve this issue requires new library calls, and much closer
attention to how input strings, and subsequently output strings, can be
abused.

 Proper use of functions to achieve program objectives is essential to
prevent unintended effects such as buffer overflows.

11/28/2010

16

Injections

 Another issue with unvalidated input is the case of code
i j tiinjection.

 Rather than the input being appropriate for the function, this
code injection changes the function in an unintended way.

 A SQL injection attack is a form of code injection aimed at any
Structured Query Language (SQL)–based database, regardless
of vendor.

 The primary defense for this vulnerability is similar to that for
buffer overflows: validate all inputs.

 Rather than validating just the length, the inputs also need to
be validated for content.

Code Injection Sample

 In this example, the function takes the user-provided inputs for
username and password and substitutes them into a where clause of a
SQL statement.Q

 Assume the desired SQL statement is:

select count(*) from users_table

where username = ‘JDoe’ and password = ‘newpass’

11/28/2010

17

Code Injection Sample
 The values JDoe and newpass are provided by the user and simply

inserted into the string sequence.

select count(*)

from users_table

where username = ‘JDoe’ and password = ‘newpass’

 Though this seems functionally safe, it can be easily corrupted by
using the sequence:

 anything’ or ‘x’=‘x

 Since this changes the where clause to one that returns all records:

select count(*)select count()

from users_table

where username = ‘JDoe’ and password = ‘anything’ or ‘x’=‘x’But

Unlike the "real" query, which should return only a single item each
time, this version will essentially return every item in the members
database

Testing for SQL Injection Vulnerability

 There are two main steps associated with testing for SQL injection
vulnerability.

 The first step is to confirm that the system is at all vulnerable.

 This can be done using various inputs to test whether an input
variable can be used to manipulate the SQL command. The
following are common test vectors used:

 ' or 1=1—

 " or 1=1—

 The second step is to use the error message information to attempt
to perform an actual exploit against the database.

11/28/2010

18

Code Injection

 Good programming practice prevents these types of vulnerabilities.

 This places the burden not just on the programmers but on:

Th f t i i The process of training programmers.

 The software engineering process that reviews code.

 The testing process to catch programming errors.

Least Privilege

 Whenever the software accesses a file, a system component, or another
program, the issue of appropriate access control needs to be addressed.

 Simple practice of just giving everything root or administrative access Simple practice of just giving everything root or administrative access
may solve this immediate problem, it creates much bigger security
issues

 An example is when a program runs correctly when initiated from
an administrator account but fails when run under normal user
privileges.

 The actual failure may stem from a privilege issue, but the actual
point of failure in the code may be many procedures away

 Diagnosing these types of failures is a difficult and time-consuming
operation.

11/28/2010

19

 Least privilege requires that the developer understand what
privileges are required specifically for an application to execute
and access all its required resources

Least Privilege

and access all its required resources.

 Determine what needs to be accessed and what the appropriate
level of permission is, then use that level in design and
implementation

Least Privilege

 Plan and understand the nature of the software’s interaction with the
operating system and system resources.

 Determine what needs to be accessed and what is the appropriate level pp p
of permission.

 Use that level in design and implementation.
 The cost of least privilege failure is two-fold.

 First, there are expensive, time-consuming access violation errors
that take a lot of time and effort to trace and correct.

 Second is when an exploit is found that allows some other program
to use portions of the code in an unauthorized fashionto use portions of the code in an unauthorized fashion.

11/28/2010

20

Cryptographic Failures

 Proper use of cryptography can provide various functionalities such as:

 Authentication

C fid ti lit Confidentiality

 Integrity

 Non-repudiation

Important

Cryptographic Failures

 A common mistake is the decision to develop your own cryptographic
algorithm.

 Cryptographic algorithms become trustworthy after years of Cryptographic algorithms become trustworthy after years of
scrutiny and attacks.

 New algorithms take years to join the trusted set.

 Deciding to use a trusted algorithm is a proper start, but there still
are several major errors that can occur.

 The first is an error in instantiating the algorithm The first is an error in instantiating the algorithm.

 An easy way to avoid this type of error is to use a library function
that has been properly tested.

Important

11/28/2010

21

Cryptographic Failures

 Randomness:

 Once you have an algorithm, and have chosen a particular
instantiation you need a random number to generate a random keyinstantiation, you need a random number to generate a random key
since cryptographic functions use an algorithm and a key, the later
being a digital number.

 There are random functions built into the libraries of most
programming languages.

 These are pseudorandom number generators. p g

 Although the distribution of output numbers appears random, it
produces a reproducible sequence.

 Using a cryptographic random number generator resolves this
problem.

Important

Use Only Approved Cryptographic Functions

 Always use vetted and approved libraries for all cryptographic work.

 Never create your own cryptographic functions, even when using
known algorithms.

 The generation of a real random number is not a trivial task.

Important

11/28/2010

22

Common cryptographic failures include
which of the following

0% 0%0%

1. Use of cryptographically
random numbers

 U
se
 o
f c
ry
pt
og
ra
ph
ica
lly
...

 C
ry
pt
og
ra
ph
ic
se
qu
en
ce
 ..
.

 P
ro
pr
ie
ta
ry
 A
lgo
rit
hm
s

0% 0%0%
2. Cryptographic sequence

failures

3. Proprietary Algorithms

Cryptographic Failures

 Storing keys:

 Storing private keys in areas where they can be recovered by an
unauthorized person is the next source of potential failureunauthorized person is the next source of potential failure.

 Tools have been developed that can search code for ‘random’ keys
and extract the key from the code or running process.

 The bottom line– do not hard code secret keys in the code, as
then they can be discovered.

 Keys should be generated and then passed by reference Keys should be generated, and then passed by reference,
minimizing the transfer of copies across a network or application.

 Storing them in memory in a non-contiguous fashion is also
important to prevent external detection and, again, trusted
cryptographic library functions come to the rescue.

Important

11/28/2010

23

Language-Specific Failures

M d i l b il d lib i h Modern programming languages are built around libraries that
permit reuse and speed the development process.

 The development of many library calls and functions was done
without regard to secure coding implications.

 Developing and maintaining a series of deprecated functions
and prohibiting their use in new code, while removing them
from old code when possible, is a proven path toward more
secure code.

Important

Microsoft Recommended Deprecated
C Functions

 Function families to deprecate/remove:
 strcpy() and strncpy()

 strcat() and strncat()

 scanf()

 sprint()

 gets()

 memcpy(), CopyMemory(), and RtlCopyMemory()

 Banned functions are easily handled via automated code
reviews during the check-in process.

11/28/2010

24

SDL Testing PhaseSDL Testing Phase

 The Testing phase
 Last opportunity to determine that software performs properly before

the end user experiences problemsthe end user experiences problems.
 Testing can occur at each level of development, module, subsystem,

system, and complete application.
 Should be done as early as possible

 The sooner errors are discovered and corrected, the lower the cost and
the impact to project schedules.

Important

Testing

 The use of use cases to compare program responses to known inputs
and comparison of the output to the desired output is a time-proven
method of testing software. g

 The design of use cases to test specific functional requirements
occurs based on the requirements determined in the requirements
phase.

 Providing additional security related to use cases is the process-
driven way to ensure that the security specifics are also tested.

 Fuzzing often used to find errors in this phase.

 Refers to a method used to test software that automates numerous
input sequences to uncover possible exploits

 Other automated code-checking tools may be run in this phase to find
errors.

Important

11/28/2010

25

When is testing best accomplished

1. After all code is finished

2 As early as possible in the

0% 0%0%0%

2. As early as possible in the
process

3. Using cryptographically
random elements

4. Using third-party testing
software

 A
fte
r a
ll
co
de
 is
 fi
ni
sh
ed

 A
s e
ar
ly
as
 p
os
sib
le
 in
 th
...

 U
sin
g c
ry
pt
og
ra
ph
ica
lly
 ..
.

 U
sin
g t
hi
rd
‐p
ar
ty
 te
st
in
g.
..

0% 0%0%0%

Good Practices

 A software development process that has security planning built-in will
make a difference in the end result.

 The process begins with requirements and ends with testing.

 Enumerating and defining the specific security requirements and how
they are tested is a key element in building security into code.

 Making a ‘code review’ requirement, where a second programmer is
walked through the functionality of code before release to testing can
catch many errorscatch many errors.

 Security requirements are often included at the end in a project.

 Putting the security requirements in the requirement phase and
having the corporate backing to maintain an acceptable level of
security functionality as a baseline solves many problems

Important

11/28/2010

26

Security requirements are best defined in:

1. The requirements phase

2 The coding phase

0% 0%0%0%

2. The coding phase

3. The testing phase

4. During architectural review
of the system

 T
he
 re
qu
ire
m
en
ts
 p
ha
se

 T
he
 co
di
ng
 p
ha
se

 T
he
 te
st
in
g p
ha
se

 D
ur
in
g
ar
ch
ite
ct
ur
al
re
v.
..

0% 0%0%0%

A Common Criteria: Basing Security Functionality
on a Protection Profile

 Commonality of purpose makes it possible to use standard profiles of
the functions

 It serves as a consistent and reliable reference point for necessary It serves as a consistent and reliable reference point for necessary
behaviors to assure software

 It is reusable because it contains the common policies, assumptions,
and requirements

 It facilitates and directs the tailoring of software and environmental
security functions for a secure system

11/28/2010

27

Common Criteria: Form of the Standard

 ISO 15408 standard, the “Common Criteria”

 Useful model for developing a protection profile

Th t t th t d d i l d Three parts to the standard include:

 Part 1: Introduction and general model

 Part 2: Security functional requirements

 Part 3: Security assurance requirements

Common Criteria: Form of the Standard

 Common Criteria

 Provides the security advice needed to address most ordinary threats

P id d i b t l t d f ti d t t Provides advice about commonly accepted functions used to create
trusted systems

 Enumerates known software security attributes confirmable through
direct observation

 Provides an encyclopedic collection of standardized adaptable
security properties

 Supports the evaluation of software products by listing attributes to Supports the evaluation of software products by listing attributes to
benchmark security behaviors

 Because of its focus on observation - is understandable and easier to
implement

