
1

Secure Software DevelopmentSecure Software Development

Chapter 18
1

Objectives

 How secure coding can be incorporated into the software 
development process.

 List the major types of coding errors and their root cause.

 Good software development practices and explain how they 
impact application security.

 How using a software development process enforces security 
inclusion in a project.

2



2

Compromises of Information

 Commonly caused by the exploitation of programming defects

 Allows attackers to affect the confidentiality, integrity, and 
availability of information assets

 Security of information assets rests on the integrity and security of its 
software

 Minor defects and flaws in programming lead to adverse 
consequences, such as the:

 Exploitation of buffer overflows

 Execution of remote procedure calls

3

Software Assurance as National Policy

 Improving software assurance practice is a national priority  

 Widespread problem that defects pose for protection of the critical 
information infrastructure

 Software enables everything from our national defense and 
financial systems to the controls that regulate our pipelines and 
nuclear plants

4



3

What are the Aims of Software Assurance?

 Software assurance identifies and eliminates exploitable defects in the 
development, acquisition, and operation of software

 Software assurance guarantees that the products are:
 Trustworthy
 Predictable
 Conformant

 Ensuring these qualities can be difficult because of the:
 Complexity of modern computer systems
 Increasing tendency for global outsourcing

5

Pair of Distinctions

 Vulnerabilities in software result from defects in specification, design, 
or programming

 Introduced at three points in the process:

 Design and development

 Distribution

 Updates and patches

 Software process

 Development and sustainment process defined by a set of 
commonly agreed-on practices

 Intended to build or enhance a software product

6



4

Software Process

 Software is a set of instructions that make the computer useful

 Programmers write those instructions using a coding or 
programming language

 Defects originate at different stages that include:

 Failure to specify the product correctly

 Incorrect design

 Poor programming practice

 Code-writing 

 Ineffective or inadequate review and testing

7

Software engineering 

 Software engineering 

 The systematic development of software.

 Universal requirement - the software works properly and performs 
the desired functions.

 Software engineering fits as many requirements as possible into a 
project management schedule timeline. 

 Analysts and developers work hard to get the functional elements 
correct. 

 However, the issue of non-functional requirements gets neglected 
entirely.

8



5

Software engineering 

 Security in Software Engineering:

 Traditionally, security is an add-on item incorporated after the 
functional requirements have been met.

 Not viewed as an integral part of the software development 
lifecycle process.

 Security has been described as a non-functional requirement.

 Usually placed into a category of secondary importance.

 Now the trend is changing

 Trust is built upon an expectation that the software will work and 
continue to meet the requirements, and not change its behavior or 
functionality because of outside influences.

9

Software Engineering Process

 The challenge - Integration 

 There are two elements to achieve this objective. 

 First, the inclusion of security requirements and measures into 
the specific process model being used. 

 Second, the use of secure coding methods to prevent any 
possibility of security failures in the software being designed.

10



6

Software Engineering Process

 From requirements to system architecture to coding to testing, security is 
an imbedded property in all aspects of the process

 Several specific models have been developed to make the process of 
programming more effective and efficient.

 Some major models include:

 The waterfall model

 The spiral model

 The evolutionary model

 The agile model

 The secure development lifecycle model (SDL)

11

Process Models

 Software Engineering Process Models

 The waterfall model.

 Characterized by a multistep process where the steps follow 
each other in a linear, one-way fashion, like water over a 
waterfall.

 The spiral model.

 Steps in phases that execute in a spiral fashion, repeating at 
different levels with each revolution of the model. 

 The evolutionary model

 an iterative model designed to enable the construction of 
increasingly complex versions of a project.

 The agile model

 Iterative development, where requirements and solutions evolve 
through an ongoing collaboration between self-organizing cross-
functional teams. 12



7

Process Models

 Independent of the method used, the process is about completing the 
requirements.

 Opportunities exist independent of the model used to include

 Security in the requirements process 

 Security awareness during architectural design, coding, and 
testing.

 The secure development model (SDL)
 From a secure coding perspective, a secure development 

lifecycle (SDL) model is essential to success.

 From requirements to system architecture to coding to testing, 
security is an embedded property in all aspects of the process. 

13

Secure Development Lifecycle

 Firms have recognized the need for secure code.

 Security should be an issue that is addressed throughout the 
development process.

 The SDL accounts for security in each of its four major phases:
 Requirements phase

 Design phase

 Coding phase

 Testing phase

14



8

SDL Requirements Phase

 The requirements phase is the first step in a software development 
process model.
 Define the specific requirements of the project.
 The details for all end product requirements are documented 

 Ensure the resultant software functions as desired.

 Items specifically regarding security should be enumerated during this 
step.

 Outcome of this phase is a document guiding security throughout the rest 
of the process.

 Adding security later tends to cost exponentially more than implementing 
it from the start.

15

SDL Requirements Phase

 Requirements should define specific security requirements if there is 
any expectation of them being designed into the project

 The requirements process is key to including security in software 
development.

 Security-related items enumerated during the requirements process 
are visible throughout the rest of the software development process.

16



9

 Analysis of security and privacy risk

 Authentication and password management

 Audit logging and analysis

 Authorization and role management

 Code integrity and validation testing

 Cryptography and key management

 Data validation and sanitization

 Network and data security

 Ongoing education and awareness

 Team staffing requirements

 Third-party component analysis

Security Considerations for Requirements Phase

17

SDL Design Phase

 Coding without designing first is like building a house without using plans. 

 This might work fine on small projects, but as the scope grows, so do 
complexity and the opportunity for failure. 

 Becomes more important as scope grows since complexity and chance of 
failure also grow. 

 Design is a process involving trade-offs and choices,

 The criteria used during the design decisions can have lasting impacts 
into program construction

 Two secure coding principle are applied during the design phase:

 Minimizing the attack surface area

 Threat modeling

18



10

Threat Modeling and Surface Area 
Minimization

 Attack surface minimization

 A strategy to reduce the place where code can be attacked.

 Threat modeling

 The process of analyzing threats and their effects on software in a 
granular fashion. 

 A communication tool designed to communicate to everyone on the 
development team the threats and dangers facing the code. 

 The output of the threat model process is a compilation of threats and 
how they interact with the software.

 This information is communicated across the design and coding team, 
so that potential weaknesses can be mitigated before the software is 
released.

19

Threat Modeling Steps

1. Define scope

1. Communicate what is in scope and out of scope with respect to the 
threat modeling effort. This includes both attacks and software 
components.

2. Enumerate assets

1. List all of the component parts of the software being examined

3. Decompose assets

1. Break apart the software into small subsystems composed of 
inputs and outputs. This is to simplify data flow analysis and to 
capture internal entry points.

4. Enumerate threats

1. List all the threats to the software.

Important
20



11

Threat Modeling Steps

5. Classify threats

1. Classify the threats by their mode of operation

6. Associate threats to assets

1. Connect specific threats and modes to specific software 
subsystems

7. Score and rank threats

5. Score each specific threat–asset pair and then rank them from 
most dangerous to least dangerous.

8. Create threat trees

5. Create a graphical representation of the required elements for an 
attack vector

9. Determine and score mitigation

5. Score the mitigation efforts associated with each attack vector

Important
21

Microsoft Threat Modeling Tool

http://www.microsoft.com/security/sdl/getstarted/threatmodeling.aspx

22



12

SDL Coding Phase

 Phase where the design is implemented.

 Software is checked for vulnerabilities using enumerations of known 
software vulnerabilities:

 Common Weakness Enumeration (CWE)

 Common Vulnerabilities and Exposures (CVE)

 Manual review is also used to reduce vulnerabilities.

 Static code analysis tools may be used to search software code for 
possible errors.

23

Major Programming Errors

 SANS & MITRE maintain a list of the 25 most dangerous programming 
errors in three categories:

 Insecure interaction between components

 Risky resource management

 Porous defenses

http://cwe.mitre.org/top25

 Common problems with erroneous code include:

– Buffer overflows

– Improper input handling

– Improper output handling

– Least privilege problems

– Injection vulnerabilities

– Cryptographic failures

– Language specific failures

24
Important



13

Buffer Overflows

 These vulnerabilities are relatively simple. The buffer used to hold 
program input is overwritten with data larger than the buffer. 

 The root cause of this vulnerability is a mixture of two things:

 Poor programming practice 

 Programming language weaknesses 

Nearly half of all software exploits stem from buffer overflow.

CERT/CC at Carnegie Mellon University

25

Buffer Overflows

 Nearly half of all exploits of computer programs stem historically from 
some form of buffer overflow.

 The generic classification of buffer overflows includes many variants:

 Static buffer overruns

 Indexing errors

 Format string bugs

 Unicode and ANSI buffer size mismatches

 Heap overruns

26



14

Countering Buffer Overflows

 Step 1 - Write solid code.

 Regardless of the language used or source of input, treat all input 
from outside a function as hostile.

 Validate all inputs as if they were hostile or were an attempt to 
force a buffer overflow. 

 Step 2 - Proper string handling.

 Strings are a common form of input 

 Because many string-handling functions have no built-in checks for 
string length, strings are frequently the source of exploitable buffer 
overflows

 String handling is common in programs and is the source of a large 
number of known buffer overflow vulnerabilities.

27

Improper Input Handling

 Users have the ability to manipulate inputs

 It is up to the programmer to appropriately handle the input to prevent 
malicious entries from having an effect. 

 In today’s computing environment, a wide range of character sets is 
used.  

 Unicode allows multi-language support. 

 Character codesets allow multi-language capability.   

 Various encoding schemes, such as hex encoding are supported to 
allow diverse inputs.  

 The net result of all these input methods is that there are numerous 
ways to create the same input to a program.

 How to deal- Canonicalization 

28



15

 Canonicalization 

 Process by which application programs manipulate strings to a base 
form, creating a foundational representation of the input. 

 abbreviated c14n, where 14 represents the number of letters 
between the C and the N

 Inputs to a web application may be processed by multiple applications, 
such as web server, application server, and database server, each with 
its own parsers to resolve appropriate canonicalization issues

 Results in Canonicalization errors

 If the error checking routine occurs prior to resolution to canonical 
form, then issues may be missed

29

Improper Output Handling

 Proper string handling. 

 A second, and equally important, line of defense. 

 String handling is a common event in programs

 String-handling functions are the source of a large number of known 
buffer-overflow vulnerabilities. 

 To resolve this issue requires new library calls, and much closer 
attention to how input strings, and subsequently output strings, can be 
abused. 

 Proper use of functions to achieve program objectives is essential to 
prevent unintended effects such as buffer overflows. 

30



16

Injections

 Another issue with unvalidated input is the case of code injection. 

 Rather than the input being appropriate for the function, this code 
injection changes the function in an unintended way. 

 A SQL injection attack is a form of code injection aimed at any 
Structured Query Language (SQL)–based database, regardless of 
vendor. 

 The primary defense for this vulnerability is similar to that for 
buffer overflows: validate all inputs.

 Rather than validating just the length, the inputs also need to 
be validated for content.

31

Code Injection Sample

 In this example, the function takes the user-provided inputs for 
username and password and substitutes them into a where clause of a 
SQL statement.

 Assume the desired SQL statement is:

select count(*) from users_table

where username = ‘JDoe’ and password = ‘newpass’

32



17

Code Injection Sample
 The values JDoe and newpass are provided by the user and simply 

inserted into the string sequence. 

select count(*)  

from users_table

where username = ‘JDoe’ and password = ‘newpass’

 Though this seems functionally safe, it can be easily corrupted by 
using the sequence:

 anything’ or ‘x’=‘x

 Since this changes the where clause to one that returns all records:

select count(*) 

from users_table

where username = ‘JDoe’ and password = ‘anything’ or ‘x’=‘x’
But 

Unlike the "real" query, which should return only a single item each 
time, this version will essentially return every item in the members 
database 33

Testing for SQL Injection Vulnerability

 There are two main steps associated with testing for SQL injection 
vulnerability. 

 The first step is to confirm that the system is at all vulnerable.

 This can be done using various inputs to test whether an input 
variable can be used to manipulate the SQL command. The 
following are common test vectors used:

 ' or 1=1—

 " or 1=1—

 The second step is to use the error message information to attempt 
to perform an actual exploit against the database.

34



18

Code Injection

 Good programming practice prevents these types of vulnerabilities. 

 This places the burden not just on the programmers but on: 

 The process of training programmers.

 The software engineering process that reviews code.

 The testing process to catch programming errors. 

35

Least Privilege

 Whenever the software accesses a file, a system component, or another 
program, the issue of appropriate access control needs to be addressed. 

 Simple practice of just giving everything root or administrative access 
may solve this immediate problem, it creates much bigger security 
issues

 An example is when a program runs correctly when initiated from 
an administrator account but fails when run under normal user 
privileges. 

 The actual failure may stem from a privilege issue, but the actual 
point of failure in the code may be many procedures away

 Diagnosing these types of failures is a difficult and time-consuming 
operation.

36



19

 Least privilege requires that the developer understand what privileges 
are required specifically for an application to execute and access all its 
required resources.

 Determine what needs to be accessed and what the appropriate level of 
permission is, then use that level in design and implementation

Least Privilege

37

Least Privilege

 Plan and understand the nature of the software’s interaction with the 
operating system and system resources.

 Determine what needs to be accessed and what is the appropriate level 
of permission. 

 Use that level in design and implementation.
 The cost of least privilege failure is two-fold. 

 First, there are expensive, time-consuming access violation errors 
that take a lot of time and effort to trace and correct.

 Second is when an exploit is found that allows some other program 
to use portions of the code in an unauthorized fashion.

38



20

Cryptographic Failures

 Proper use of cryptography can provide various functionalities such as: 

 Authentication

 Confidentiality 

 Integrity

 Non-repudiation

Important
39

Cryptographic Failures

 A common mistake is the decision to develop your own cryptographic 
algorithm. 

 Cryptographic algorithms become trustworthy after years of 
scrutiny and attacks. 

 New algorithms take years to join the trusted set. 

 Deciding to use a trusted algorithm is a proper start, but there still 
are several major errors that can occur. 

 The first is an error in instantiating the algorithm. 

 An easy way to avoid this type of error is to use a library function 
that has been properly tested. 

Important
40



21

Cryptographic Failures

 Randomness:

 Once you have an algorithm, and have chosen a particular 
instantiation, you need a random number to generate a random key 
since cryptographic functions use an algorithm and a key, the later 
being a digital number.

 There are random functions built into the libraries of most 
programming languages.

 These are pseudorandom number generators. 

 Although the distribution of output numbers appears random, it 
produces a reproducible sequence. 

 Using a cryptographic random number generator resolves this 
problem.

Important
41

Use Only Approved Cryptographic Functions

 Always use vetted and approved libraries for all cryptographic work. 

 Never create your own cryptographic functions, even when using 
known algorithms.

 The generation of a real random number is not a trivial task. 

Important 42



22

Cryptographic Failures

 Storing keys:

 Storing private keys in areas where they can be recovered by an 
unauthorized person is the next source of potential failure.

 Tools have been developed that can search code for ‘random’ keys 
and extract the key from the code or running process. 

 The bottom line– do not hard code secret keys in the code, as 
then they can be discovered. 

 Keys should be generated, and then passed by reference, 
minimizing the transfer of copies across a network or application.

 Storing them in memory in a non-contiguous fashion is also 
important to prevent external detection and, again, trusted 
cryptographic library functions come to the rescue.

Important 43

Language-Specific Failures

 Modern programming languages are built around libraries that 
permit reuse and speed the development process. 

 The development of many library calls and functions was done 
without regard to secure coding implications. 

 Developing and maintaining a series of deprecated functions 
and prohibiting their use in new code, while removing them 
from old code when possible, is a proven path toward more 
secure code.

Important 44



23

Microsoft Recommended Deprecated 
C Functions

 Function families to deprecate/remove:
 strcpy() and strncpy()

 strcat() and strncat()

 scanf()

 sprint()

 gets()

 memcpy(), CopyMemory(), and RtlCopyMemory()

 Banned functions are easily handled via automated code 
reviews during the check-in process. 

45

SDL Testing Phase

 The Testing phase 
 Last opportunity to determine that software performs properly before 

the end user experiences problems. 
 Testing can occur at each level of development, module, subsystem, 

system, and complete application.
 Should be done as early as possible

 The sooner errors are discovered and corrected, the lower the cost and 
the impact to project schedules. 

Important 46



24

Testing

 The use of use cases to compare program responses to known inputs 
and comparison of the output to the desired output is a time-proven 
method of testing software. 

 The design of use cases to test specific functional requirements 
occurs based on the requirements determined in the requirements 
phase. 

 Providing additional security related to use cases is the process-
driven way to ensure that the security specifics are also tested.

 Fuzzing often used to find errors in this phase.

 Refers to a method used to test software that automates numerous 
input sequences to uncover possible exploits

 Other automated code-checking tools may be run in this phase to find 
errors.

Important 47

Good Practices

 A software development process that has security planning built-in will 
make a difference in the end result. 

 The process begins with requirements and ends with testing. 

 Enumerating and defining the specific security requirements and how 
they are tested is a key element in building security into code.

 Making a ‘code review’ requirement, where a second programmer is 
walked through the functionality of code before release to testing can 
catch many errors.

 Security requirements are often included at the end in a project.

 Putting the security requirements in the requirement phase and 
having the corporate backing to maintain an acceptable level of 
security functionality as a baseline solves many problems

Important
48



25

A Common Criteria: Basing Security Functionality 
on a Protection Profile

 Commonality of purpose makes it possible to use standard profiles of 
the functions

 It serves as a consistent and reliable reference point for necessary 
behaviors to assure software

 It is reusable because it contains the common policies, assumptions, 
and requirements

 It facilitates and directs the tailoring of software and environmental 
security functions for a secure system

49

Common Criteria: Form of the Standard

 ISO 15408 standard, the “Common Criteria”

 Useful model for developing a protection profile 

 Three parts to the standard include: 

 Part 1: Introduction and general model

 Part 2: Security functional requirements

 Part 3: Security assurance requirements

50



26

Common Criteria: Form of the Standard

 Common Criteria

 Provides the security advice needed to address most ordinary threats

 Provides advice about commonly accepted functions used to create 
trusted systems

 Enumerates known software security attributes confirmable through 
direct observation

 Provides an encyclopedic collection of standardized adaptable 
security properties

 Supports the evaluation of software products by listing attributes to 
benchmark security behaviors

 Because of its focus on observation - is understandable and easier to 
implement

51


