
CSIS 3103 Fall 2010

ds10-1 1

CSIS 3103
Graphs

Graphs

Tree nodes have only one parent
Graphs do not have this limitation
Graphs algorithms are used in
• large communication networks
• software that makes the Internet function
Graphs describe
• roads maps
• airline routes
• course prerequisites

Graph Terminology

Graph: A data structure that consists of a set
of vertices (nodes) and a set of edges
(relations)

• Edges represent paths or connections
between the vertices

• The set of vertices and the set of edges
must both be finite

Visual Representation of Graphs

Vertices: points or labeled circles
Edges: lines joining the vertices

V = {A, B, C, D, E}
E = {{A, B}, {A, D}, {C, E}, {D, E}}

Visual Representation of Graphs

The layout of the vertices and the labeling
are not relevant

V = {0, 1, 2, 3, 4, 5, 6}
E = {{0, 1}, {0, 2}, {0, 5}, {0, 6}, {3, 5}, {3, 4}, {4, 5}, {4, 6}}

Directed and Undirected Graphs

Undirected graph: The edges have no
direction

Directed graph (digraph): Each edge is
directed from one vertex to another (or the
same) vertex

{{A, B}, {B, A}, {B, E}, {D, A},
{E, A}, {E, C}, {E, D}}

CSIS 3103 Fall 2010

ds10-1 2

Weighted Graphs

A graph in which each edge carries a value

320

130

180

150

180

180 120

148

260

40

50

60

155

120

Chicago

Indianapolis Columbus

Fort
Wayne

Ann Arbor

Detroit

Toledo

Cleveland Pittsburgh

Philadelphia

More Terminology

Adjacent vertices: Two vertices in a
graph that are connected by an edge

Path: A sequence of vertices where each
successive vertex is adjacent to its
predecessor

Cycle: A path from a node back to itself

Acyclic graph: A graph with no cycles
Connected graph: A graph in which every
vertex is reachable from every other vertex

320

130

180

150

180

180 120

148

260

40

50

60

155

120

Chicago

Indianapolis Columbus

Fort
Wayne

Ann Arbor

Detroit

Toledo

Cleveland Pittsburgh

Philadelphia

Cycle
Connected

graph

4

8

5

9

6 7
Unconnected

graph

Graphs and Trees

A tree is a special case of a graph
Any graph that is

connected
contains no cycles

can be viewed as a tree by making one of the
vertices the root

The Graph ADT
A graph ADT needs to support

– Creating a graph with a specified number of vertices

– Iterating through all of the vertices in the graph

– Iterating through the vertices that are adjacent to a
specified vertex

– Determining whether an edge exists between two
vertices

– Finding the weight of an edge between two vertices

– Inserting an edge into the graph

The Java API does not provide a Graph ADT

The Edge Class
(for weighted digraphs)

CSIS 3103 Fall 2010

ds10-1 3

Implementing the Graph ADT

The most common representations of graphs:

Adjacency lists: Edges are represented by
an array of lists where each list stores the
vertices adjacent to a particular vertex

Adjacency matrix: Edges are represented by
a two dimensional array

Adjacency List

Adjacency List Adjacency Matrix

(Unweighted graph entries can be boolean values)

The Graph Class Hierarchy Class AbstractGraph

CSIS 3103 Fall 2010

ds10-1 4

The ListGraph Class Graph Traversals

• Most graph algorithms involve visiting
each vertex in a systematic order

• The most common traversal algorithms
– Breadth first search
– Depth first search

Breadth-First Search

Start at a vertex and visit it,

then visit all vertices that are adjacent to it,

then visit vertices with path length 2 from it,

path length 3, etc.

– Must visit all nodes for which the shortest
path from the start node is length k before
visiting any node for which the shortest path
from the start node is length k + 1

Algorithm for Breadth-First
Search

Breadth-First Search

Breadth-first search example

Breadth-First Search

CSIS 3103 Fall 2010

ds10-1 5

Depth-First Search
Start at a vertex and visit it,

choose one adjacent vertex to visit,

then choose a vertex adjacent to that vertex…,
…and so on until you can go no further;

then back up and see whether a new vertex
can be found

Algorithm for Depth-First Search

Depth-First Search
Depth-first
search
example

Depth-First Search

