CSIS 3103

T
Lo

CSIS 3103
Graphs

Fall 2010

Graphs

Tree nodes have only one parent

Graphs do not have this limitation

Graphs algorithms are used in

« large communication networks

« software that makes the Internet function
Graphs describe

* roads maps

« airline routes

e course prerequisites

Graph Terminology

Graph: A data structure that consists of a set
of vertices (nodes) and a set of edges
(relations)

« Edges represent paths or connections
between the vertices

» The set of vertices and the set of edges
must both be finite

Visual Representation of Graphs
Vertices: points or labeled circles

Edges: lines joining the vertices

V={A, B, C, D, E}
E = {{A, B}, {A, D}, {C, E}, {D, E}}

Visual Representation of Graphs

The layout of the vertices and the labeling
are not relevant

a) &) YN 7
o) —6 4) (6)
N 2/ \‘_1\\‘\ (&)
AN (D—Y3)
o/ NS Ny N
0\ \
- (1)
3\ N~ \

v={0,1,2 34,56}
E ={{0, 1}, {0, 2}, {0, 5}, {0, 6}, {3, 5}, {3, 4}, {4, 5}, {4, 6}}

ds10-1

Directed and Undirected Graphs

Undirected graph: The edges have no
direction

Directed graph (digraph): Each edge is
directed from one vertex to another (or the
same) vertex

{{A. B}, {B, A}, {B, E}, {D. A}, ‘
{E. A} {E, C}. {E, D}} P P!
(D

CSIS 3103

Weighted Graphs

A graph in which each edge carries a value

Fall 2010

More Terminology

Adjacent vertices: Two vertices in a
graph that are connected by an edge
Path: A sequence of vertices where each
successive vertex is adjacent to its
predecessor

Cycle: A path from a node back to itself
Acyclic graph: A graph with no cycles
Connected graph: A graph in which every
vertex is reachable from every other vertex

Ann Arbor
/// 50 Detroit
/a0
/ 60 120 Cleveland 150 Pittsburgh
260
Toledo PZaN
p \izo
Chicago
148 155 150 N
Fort N
Wayne 180 Philadelphia
180\ 120
180
Indianapolis Columbus
Ann Arbor
// 50 Detroit
oy 120 Cleveland 50 Pittsburgh
Cycle 2 —
S
Connected /
Chicago o
graph Fort N
Wayne Philadelphia
180\, {120
|
A 180
o o
Indianapolis Columbus
4 5
ey S’
Unconnected
S \Z/
graph T —
@ —@

Graphs and Trees

A tree is a special case of a graph
Any graph that is

connected

contains no cycles

can be viewed as a tree by making one of the
vertices the root

»—® ‘/C\
/ = & ®

The Graph ADT

A graph ADT needs to support
— Creating a graph with a specified number of vertices
— Iterating through all of the vertices in the graph

— lterating through the vertices that are adjacent to a
specified vertex

— Determining whether an edge exists between two
vertices

— Finding the weight of an edge between two vertices
— Inserting an edge into the graph

The Java API does not provide a Graph ADT

ds10-1

The Edge Class
(for weighted digraphs)

private int dest The destination vertex for an edge.
private int source The source vertex for an edge.
private double weight The weight.

5
i

public Edge(int source, int dest) Constructs an Edge from source to dest. Sets the weight to 1.0.

public Edge(int source, int dest, Constructs an Edge from source to dest. Sets the weight to w.
double w)

i
I

public boolean equals(Object o) Compares two edges for equality. Edges are equal if their source
and destination vertices are the same. The weight is not considered.

public int getDest() Returns the destination vertex.

public int getSource() Retumns the source vertex.

public double getWeight() Retums the weight.

public int hashCode() Returns the hash code for an edge. The hash code depends only on
the source and destination.

public String toString() Returns a string representation of the edge.

CSIS 3103

Implementing the Graph ADT

The most common representations of graphs:

Adjacency lists: Edges are represented by
an array of lists where each list stores the
vertices adjacent to a particular vertex

Adjacency matrix: Edges are represented by
a two dimensional array

Fall 2010

Adjacency List

O—
10)
8}
| g
3
e s

AL

Adjacency List

3r) ‘\85] s
Adjacency Matrix
i [;nlll\lw
(0] | [1){[2] | [3] | [4] | (5]
(o) (1 G @ Lo |10
Y) LY | 1.0
} EHE 1.0[1.0
- 3] 1.0
(€3 & O,
T [1.0
‘_] 5] 1.0
Column
(1| (11| [2]) [3] | (4]
e |10 1.0
z|[1]|1.0 1.0/1.0/1.0
-4

[2] 1.0 1.0
(31 1.0[1.9) 1.0
[41|1.0|1.0 1.0

(Unweighted graph entries can be boolean values)

The Graph Class Hierarchy

ds10-1

Class AbstractGraph

Data Field Attribute

private boolean directed true if this is a directed graph.

private int numv The number of vertices.

public AbstractGraph(int numV, boolean Onstructs an empty with the specified number of

directed) Vertic Vi e ified directed flag. If di rected
his is a directed graph.

public int gethumv() Gets the number of vertices.

public boolean isDirected() Returns true if the graph is a directed graph.

public void Loads edges from a data file.
ToadEdgesFromFile(Scanner scan)

public static Graph createGraph Factory method to create a graph and load the data from
(Scanner scan, boolean isDirected, an input file.
String type)

CSIS 3103

The ListGraph Class

Data Field Attribute

private List<Edge>[] edges An array of Lists to contain the edges that originate with each
vertex.

Constructor Purpose

public ListGraph(int numV, Constructs a graph with the specified number of vertices and

boolean directed) directionality.

public Iterator<Edge> Returns an iterator to the edges that originate from a given vertex.
edgelterator(int source)

public Edge getEdge(int source, Gets the edge between two vertices.

int dest)

public void insert(Edge e) Inserts a new edge into the graph.

public boolean isEdge(int source, Determines whether an edge exists from vertex source to dest.
int dest)

Fall 2010

Graph Traversals

« Most graph algorithms involve visiting
each vertex in a systematic order

* The most common traversal algorithms
— Breadth first search
— Depth first search

Breadth-First Search

Start at a vertex and visit it,
then visit all vertices that are adjacent to it,
then visit vertices with path length 2 from it,
path length 3, etc.
— Must visit all nodes for which the shortest
path from the start node is length k before

visiting any node for which the shortest path
from the start node is length k + 1

Algorithm for Breadth-First
Search

Algorithm for Breadth-First Search
1. Take an arbitrary start vertex, mark it identified (color it light blue), and
place it in a queue.
while the queue is not empty
Take a vertex, u, out of the queue and visit s.
for all vertices, v, adjacent to this vertex,
if v has not been identified or visited
Mark it identified (color it light blue).
Insert vertex v into the queue.
We are now finished visiting # (color it dark blue).

Mok

=

Breadth-F‘irst Search

Breadth-First Search

Trace of Breadth-First Search of Graph in Figure 1215

Vertex Being Visited Queue Contents After Visit Visit Sequence

0 13 0

1 32467 01

3 2467 013

2 46789 0132

4 678935 01324

6 7895 013246

7 8935 0132467

8 95 01324678
9 5 013246789
5 empry 0132467895

CSIS 3103

Depth-First Search

Start at a vertex and visit it,
choose one adjacent vertex to visit,

then choose a vertex adjacent to that vertex...,

...and so on until you can go no further;
then back up and see whether a new vertex

can sicure 1218
Graph to Be Traversed
Depth First

Fall 2010

Algorithm for Depth-First Search

Algorithm for Depth-First Search

R

Mark the current vertex, u, visited (color it light blue), and enter it in the
discovery order list
for each vertex, 1, adjacent to the current vertex, i
1f v has not been visited
Set parent of v to u.
Recursively apply this algorithm starting at 1.
Mark u finished (color it dark blue) and enter u into the finish order list.

Depth-First Search
search l"(‘

example
A

ds10-1

Depth-First Search

Trace of Depth-First Search of Figure 1219

Visit 0 1,2,3,4 0

Visit 1 0,3,4 0,1

Visit 3 0,1,4 0,1,3

Visit 4 0,1,3 0,1,3,4

Finish 4 4

Finish 3 4,3

Finish 1 43,1

Visit 2 0,56 0,1,3,4,2

Visit § 2,6 0,1,3,42,5

Visit 6 2,5 0,1,3,4,2,5,6

Finish 6 4,3, 1,6
Finish § 4,3,1,6,5
Finish 2 4,3,1,6,5,2
Finish 0 4,3,1,6,52,0

