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CSIS 3103
Graphs

Graphs

Tree nodes have only one parent
Graphs do not have this limitation
Graphs algorithms are used in
• large communication networks
• software that makes the Internet function
Graphs describe
• roads maps
• airline routes
• course prerequisites

Graph Terminology

Graph: A data structure that consists of a set 
of vertices (nodes) and a set of edges
(relations) 

• Edges represent paths or connections 
between the vertices

• The set of vertices and the set of edges 
must both be finite

Visual Representation of Graphs

Vertices: points or labeled circles
Edges: lines joining the vertices

V = {A, B, C, D, E}
E = {{A, B}, {A, D}, {C, E}, {D, E}}

Visual Representation of Graphs

The layout of the vertices and the labeling 
are not relevant

V = {0, 1, 2, 3, 4, 5, 6}
E = {{0, 1}, {0, 2}, {0, 5}, {0, 6}, {3, 5}, {3, 4}, {4, 5}, {4, 6}}

Directed and Undirected Graphs

Undirected graph: The edges have no 
direction

Directed graph (digraph): Each edge is 
directed from one vertex to another (or the 
same) vertex

{{A, B}, {B, A}, {B, E}, {D, A}, 
{E, A}, {E, C}, {E, D}}
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Weighted Graphs

A graph in which each edge carries a value
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More Terminology

Adjacent vertices: Two vertices in a 
graph that are connected by an edge

Path: A sequence of vertices where each 
successive vertex is adjacent to its 
predecessor

Cycle: A path from a node back to itself

Acyclic graph: A graph with no cycles 
Connected graph: A graph in which every 
vertex is reachable from every other vertex
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Graphs and Trees

A tree is a special case of a graph
Any graph that is 

connected
contains no cycles

can be viewed as a tree by making one of the 
vertices the root

The Graph ADT
A graph ADT needs to support

– Creating a graph with a specified number of vertices

– Iterating through all of the vertices in the graph

– Iterating through the vertices that are adjacent to a 
specified vertex

– Determining whether an edge exists between two 
vertices

– Finding the weight of an edge between two vertices

– Inserting an edge into the graph

The Java API does not provide a Graph ADT

The Edge Class 
(for weighted digraphs)
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Implementing the Graph ADT

The most common representations of graphs:

Adjacency lists: Edges are represented by 
an array of lists where each list stores the 
vertices adjacent to a particular vertex

Adjacency matrix: Edges are represented by 
a two dimensional array

Adjacency List

Adjacency List Adjacency Matrix

(Unweighted graph entries can be boolean values)

The Graph Class Hierarchy Class AbstractGraph
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The ListGraph Class Graph Traversals

• Most graph algorithms involve visiting 
each vertex in a systematic order

• The most common traversal algorithms 
– Breadth first search
– Depth first search

Breadth-First Search

Start at a vertex and visit it,

then visit all vertices that are adjacent to it, 

then visit vertices with path length 2 from it, 

path length 3, etc.

– Must visit all nodes for which the shortest 
path from the start node is length k before 
visiting any node for which the shortest path 
from the start node is length k + 1

Algorithm for Breadth-First 
Search

Breadth-First Search

Breadth-first search example

Breadth-First Search 



CSIS 3103 Fall 2010

ds10-1 5

Depth-First Search
Start at a vertex and visit it,

choose one adjacent vertex to visit,

then choose a vertex adjacent to that vertex…, 
…and so on until  you can go no further;

then back up and see whether a new vertex 
can be found

Algorithm for Depth-First Search

Depth-First Search
Depth-first
search
example

Depth-First Search


