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CSIS 3103

Ch 8: Non-comparison Sorts

Comparison Based Sorts

• All previous sorting techniques are 
comparison based

• The fastest possible comparison sort is 
O(n log n)

• Are there any faster sorting algorithms?

Bucket Sort

• A non-comparison sort

• Bucket sort works well when 
– Keys are distributed in a range, 0..m-1

– and this range is small compared to the number 
of items to be sorted 
(duplicates are allowed)

Bucket Sort Example

• Suppose all keys are in: 0..7

• Create an array or ArrayList with m = 8
buckets, making each bucket a Queue

• Insert all input values into the appropriate 
bucket

• Concatenate or copy the queues in order

Bucket Sort Example
Inputs: 5, 2, 7, 6, 1, 2, 4, 6, 7, 2, 1

0 1 2 3 4 5 6 7

51 2

2

21

4 6

6

7

7

0 1 2 3 4 5 6 7

1 1 2 2 2 4 5 6
8
6 7 7

9 10

Bucket Sort

Run time is O(n + m) which is O(n)
when m is relatively small

Variation (Counting Sort):

– If the keys are just raw numbers, 
just store a count in the buckets
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Radix Sort

Radix sort considers the structure of 
the keys

• Suppose we want to sort 1000 items 
in the range from 0 to 99,999,999

• Bucket sort would spend too much 
time initializing and concatenating 
empty queues

Sorting punch cards: http://en.wikipedia.org/wiki/File:Punch_card_sorter.JPG

Radix Sort

Given input of n numbers having d-digits:
for k in 0..d-1

sort the array in a stable way, 
looking only at digit k

(stable means equal items are kept in the same order 
relative to each other as they were before sorting)

• What stable sort should we use? 
– Bucket Sort! It's O(n)

• Thus, total running time is O(dn)

• And d is a constant, so Radix Sort is O(n)

Radix Sort With 3-digit Integers
0
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First, sort on 
rightmost 
digits

Next, 
middle 
digits

Last, 
left 
digits

Radix Sort… Made Even Better?

• We can actually do better than sorting on 
one decimal digit at a time

• It would likely be faster if we sort on two 
digits at a time (using a radix of 100) or 
three (using a radix of 1000)

• But on computers, it's more natural to 
choose a power-of-two radix like 256
– Base-256 digits are easier to extract from a 

key, because eight bits can quickly be pulled 
out of an integer

Radix Sort

• Radix sort is not limited to just integer keys

• Almost any data that can be compared 
bitwise can be used
– IEEE standard for floating-point numbers is 

designed to work with radix sort

Radix Sort For Strings
Strings of different lengths can be sorted 
in time proportional to the total length of 
the strings
– Phase 1: Sort the strings by their length

– Phase 2: Sort the strings character by 
character (or several characters at a time), 
starting with the last character of the longest 
string and working backward to the first 
character of every string

– We don't sort every string during every pass 
of the second phase - only if it has a character 
in the appropriate place
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Radix Sort
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Sort by 
lengths

Sort character positions right to left, 
where positions are available


