CSIS 3103

CSIS 3103

Ch 8: Non-comparison Sorts

Fall 2009

Comparison Based Sorts

« All previous sorting techniques are
comparison based

e The fastest possible comparison sort is
O(n log n)

« Are there any faster sorting algorithms?

Bucket Sort

* A non-comparison sort
* Bucket sort works well when
— Keys are distributed in a range, 0..m-1

— and this range is small compared to the number
of items to be sorted
(duplicates are allowed)

Bucket Sort Example

Suppose all keys arein: 0. .7

e Create an array or ArrayList withm=38
buckets, making each bucket a Queue

Insert all input values into the appropriate
bucket

« Concatenate or copy the queues in order

Bucket Sort Example

Inputs: 5,2,7,6,1,2,4,6,7,2,1
0o 1 2 3 4 5 6 7

o1 2 3 4 5 6 7 8 9 10
[1]r]2]2]2[af5]6[6]7]7]

Ch 10-3

Bucket Sort

Run time is O(n + m) which is O(n)
when m is relatively small
Variation (Counting Sort):

— If the keys are just raw numbers,
just store a count in the buckets

CSIS 3103

Radix Sort

Radix sort considers the structure of
the keys

e Suppose we want to sort 1000 items
in the range from 0 to 99,999,999

» Bucket sort would spend too much
time initializing and concatenating
empty queues

Sorting punch cards: http://en.wikipedia.org/wiki/File:Punch card sorter.JPG

Fall 2009

Radix Sort

Given input of n numbers having d-digits:
forkin 0..d-1
sort the array in a stable way,
looking only at digit k
(stable means equal items are kept in the same order
relative to each other as they were before sorting)
* What stable sort should we use?
— Bucket Sort! It's O(n)
e Thus, total running time is O(dn)

» And d is a constant, so Radix Sort is O(n)

Radix Sort With 3-digit Integers

Radix Sort... Made Even Better?

* We can actually do better than sorting on
one decimal digit at a time

« It would likely be faster if we sort on two
digits at a time (using a radix of 100) or
three (using a radix of 1000)

« But on computers, it's more natural to
choose a power-of-two radix like 256

— Base-256 digits are easier to extract from a
key, because eight bits can quickly be pulled
out of an integer

0|0]3|2 0[3]1 0f1]5 0115
112|2]4 0[3]2 0j1]6 01116
210|1|6 2|5]2 1123 013|1
310]1|5 112]3 2124 0132
410]3(1 2|2)4 o3 112(3
511]6/9 0[1)5 0]3)2 1169
61112|3 0[1)6 215)2 2124
712]5|2 1169 11619 2152
First, sort onj Next, j L Last,
rightmost middle left
digits digits digits
Radix Sort

» Radix sort is not limited to just integer keys
< Almost any data that can be compared
bitwise can be used

— |EEE standard for floating-point numbers is
designed to work with radix sort

Ch 10-3

Radix Sort For Strings

Strings of different lengths can be sorted

in time proportional to the total length of

the strings

— Phase 1: Sort the strings by their length

— Phase 2: Sort the strings character by
character (or several characters at a time),
starting with the last character of the longest
string and working backward to the first
character of every string

— We don't sort every string during every pass
of the second phase - only if it has a character
in the appropriate place

CSIS 3103

Radix Sort
BAACB || BA BA BA BA BA ACCB
BA CcC CcC CcC cC BAACB ||BA
ACCB ACCB ACCB ACCB CCAAA ||CC BAACB
CCAAA ||BAACB ||CCAAA || CCAAA ||BAACB ||CCAAA ||CC
CcC CCAAA ||BAACB ||BAACB ||ACCB ACCB CCAAA

Sort character positions right to left,
where positions are available

Ch 10-3

Fall 2009

