
CSIS 3103 Fall 2009

Ch 10-3 1

CSIS 3103

Ch 8: Non-comparison Sorts

Comparison Based Sorts

• All previous sorting techniques are 
comparison based

• The fastest possible comparison sort is 
O(n log n)

• Are there any faster sorting algorithms?

Bucket Sort

• A non-comparison sort

• Bucket sort works well when 
– Keys are distributed in a range, 0..m-1

– and this range is small compared to the number 
of items to be sorted 
(duplicates are allowed)

Bucket Sort Example

• Suppose all keys are in: 0..7

• Create an array or ArrayList with m = 8
buckets, making each bucket a Queue

• Insert all input values into the appropriate 
bucket

• Concatenate or copy the queues in order

Bucket Sort Example
Inputs: 5, 2, 7, 6, 1, 2, 4, 6, 7, 2, 1

0 1 2 3 4 5 6 7

51 2

2

21

4 6

6

7

7

0 1 2 3 4 5 6 7

1 1 2 2 2 4 5 6
8
6 7 7

9 10

Bucket Sort

Run time is O(n + m) which is O(n)
when m is relatively small

Variation (Counting Sort):

– If the keys are just raw numbers, 
just store a count in the buckets



CSIS 3103 Fall 2009

Ch 10-3 2

Radix Sort

Radix sort considers the structure of 
the keys

• Suppose we want to sort 1000 items 
in the range from 0 to 99,999,999

• Bucket sort would spend too much 
time initializing and concatenating 
empty queues

Sorting punch cards: http://en.wikipedia.org/wiki/File:Punch_card_sorter.JPG

Radix Sort

Given input of n numbers having d-digits:
for k in 0..d-1

sort the array in a stable way, 
looking only at digit k

(stable means equal items are kept in the same order 
relative to each other as they were before sorting)

• What stable sort should we use? 
– Bucket Sort! It's O(n)

• Thus, total running time is O(dn)

• And d is a constant, so Radix Sort is O(n)

Radix Sort With 3-digit Integers
0
1

2

3

4

5
6

7

First, sort on 
rightmost 
digits

Next, 
middle 
digits

Last, 
left 
digits

Radix Sort… Made Even Better?

• We can actually do better than sorting on 
one decimal digit at a time

• It would likely be faster if we sort on two 
digits at a time (using a radix of 100) or 
three (using a radix of 1000)

• But on computers, it's more natural to 
choose a power-of-two radix like 256
– Base-256 digits are easier to extract from a 

key, because eight bits can quickly be pulled 
out of an integer

Radix Sort

• Radix sort is not limited to just integer keys

• Almost any data that can be compared 
bitwise can be used
– IEEE standard for floating-point numbers is 

designed to work with radix sort

Radix Sort For Strings
Strings of different lengths can be sorted 
in time proportional to the total length of 
the strings
– Phase 1: Sort the strings by their length

– Phase 2: Sort the strings character by 
character (or several characters at a time), 
starting with the last character of the longest 
string and working backward to the first 
character of every string

– We don't sort every string during every pass 
of the second phase - only if it has a character 
in the appropriate place



CSIS 3103 Fall 2009

Ch 10-3 3

Radix Sort

CCAAA

BA
ACCB

BAACB

CC CCAAA

BA

ACCB
BAACB

CC
CCAAA

BA

ACCB
BAACA

CC

CCAAA

BA

ACCB

BAACB

CC
CCAAA

BA

ACCB
BAACB

CC

CCAAA

BA

ACCB

BAACB
CC

CCAAA

BA
ACCB

BAACB
CCCCAAA

BAACB

Sort by 
lengths

Sort character positions right to left, 
where positions are available


