CSIS 3103

CSIS 3103

Ch 8: Sorting

Fall 2010

Sorting

Probably the most extensively studied problem

in computer science

Many sorting algorithms exist

Applications range from

— simple in-memory sorting of a small collection of
integers

— sorting massive sets of records in databases
involving external storage and multiple
processors

We will look at a small sample of the known
sorting algorithms

An Invariant for Sorting

A list of elements, A, is sorted (in ascending
order) if

For all i, jin 0..A.length — 1: i <j= A[i] < A[j]

Using Java Sorting Methods

« Java API provides a class Arrays with
several overloaded sort methods for
different array types

* The Collections class provides similar
sorting methods

— Sorting methods for arrays of primitive types
are based on the quicksort algorithm

— Sorting methods for arrays of objects and
Lists are based on mergesort

Java Sorting Methods

Method sort in Class Arrays Behavior
public static void sort(int(] itess) So in ascending order,

public static void sort(int[) itess,
int fromIndex, int toIndex)

tems(froaIndex] to ftams(tolndex)

public static void sort(Object(] itess) Sors the

public static void sort(Object(] itess,
int fromIndex, int tolndex

public static <T> void sort(T[] itess,
Comparator<? super T> comp)

public static <T» void sort(T[] item tolndex
int fromIndex, int toIndex, A
Comparator<? super T> comp) be mutually ¢ ethod

public static <F extends Comparable<T>» Sorts the
void sort(List<T> 1ist)

public static <T> void sert
(ListeTs Tist
Conparator<? super T> conp)

ds08-1

Declaring a Generic Method

é SYNTAX Declaring a Generic Method

FORM:
methodModifiers <genericParameters> returnType methodName(miethodParameters)

EXAMPLE:

public static <T extends Comparable<T>> int binarySearch(T[] items,
target)

MEANING:

To declare a generic method, list the genericParanteters inside the symbol pair <
and berween the methodModifiers (¢.g., public static) and the return type. The
genericParameters can then be used in the fication of the P

CSIS 3103

Fall 2010

Selection Sort

A relatively simple algorithm that sorts an

array by making passes through the array,
selecting the smallest remaining item and

placing it where it belongs in the array

— Efficiency is O(n?)

Selection Sort

Basic rule: on each pass select the
smallest remaining item and place it in its
proper location

Exchange 20, 35§ ——— m
20 Em 60 15. Exchange 30, 65 ———— -29 30 | 65
[20] 30 8] o0 B8] Exchange 35, 65—~ [20]30 [35] s0
- 30 ;- 65 | Exchange 60 with itself —— | 20 ;;;F

Selection Sort Algorithm

1.for fill = 0 ton — 2 do

2. Set posMin to the subscript of the smallest item in the subarray
starting at subscript fill

3. Exchange the item at posMin with the one at Fill

Refining Step 2
2.1 for next = fill + 1 ton — 1 do
2.2 i T the item at next is less than the item at posMin
2.3 Reset posMin to next

Number of comparisons is O(n?)
Number of exchanges is O(n)

Bubble Sort

Compares adjacent array elements and
exchanges their values if they are out of
order

One Pass of Bubble Sort

HEIEEE
EREEEE]

i 01[42] [&z]
Array After Completion [11[68 60
ofEach Pass o] [77]
27 I75]
(%3] (2]

Analysis of Bubble Sort

Very poor performance in most cases
Works best when array is nearly sorted to
begin with

Worst case number of comparisons is O(n?)
Worst case number of exchanges is O(n?)

Best case occurs when the array is already
sorted: O(n) comparisons and O(1) exchanges

Insertion Sort

Based on the technique commonly used to

arrange a hand of cards

— Player keeps the cards that have been picked
up so far in sorted order

— When the player picks up a new card, he
makes room for the new card and inserts it in
its proper place

3 lg‘fﬂ“ 3 ‘2‘4'?4“ 5 Giaics o
Y ’.4 ‘ v@v’o a1 3%
['ﬁ: ‘ '(’ ’a’ ot “‘

ds08-1

CSIS 3103

Insertion Sort Algorithm

For each array element from the second

(nextPos = 1) tothe last

— Insert the element at nextPos where it
belongs in the array, increasing the length of
the sorted subarray by 1

Endof Endof Endof Endof
pass1 pass2 pass3 pass4

BIFIEF

Fall 2010

Analysis of Insertion Sort

Maximum number of comparisons is O(n?)
Best case number of comparisons is O(n)

The number of shifts performed during an
insertion is one less than or the same as the
number of comparisons

A shift in insertion sort requires the moving
only one item whereas in bubble or selection
sort an exchange involves a temporary item
and requires the movement of three items

Comparison of Quadratic Sorts

Number of Comparisons Number of Exchanges

Best Worst Best Worst
Selection sort o) o(?) O(n) O(n)
Bubble sort O(n) O(n?) o(1) O(n?)
Insertion sort O(n) O(n?) O(n) O(n?)

Comparison of Quadratic Sorts

* Insertion sort
— gives the best performance for most arrays
— takes advantage of any partial sorting in the array

and uses less costly shifts

* Bubble sort generally gives the worst
performance—unless the array is nearly sorted

« None of the quadratic search algorithms are very
good for large arrays (n > 1000)

« The best sorting algorithms provide n log n
average case performance

Comparisons versus Exchanges

* In Java objects, an exchange requires a switch of
two object references using a third object
reference as an intermediary

« A comparison requires an execution of a
compareTo method
— The cost of a comparison depends on its complexity,

but is generally more costly than an exchange

» For some languages (and primitives in Java), an
exchange may involve physically moving
information rather than swapping object
references. In these cases, an exchange may be
more costly than a comparison

ds08-1

