
CSIS 3103 Fall 2010

ds08-1 1

CSIS 3103

Ch 8: Sorting

Sorting
• Probably the most extensively studied problem

in computer science

• Many sorting algorithms exist

• Applications range from
– simple in-memory sorting of a small collection of

integers

– sorting massive sets of records in databases
involving external storage and multiple
processors

• We will look at a small sample of the known
sorting algorithms

An Invariant for Sorting

A list of elements, A, is sorted (in ascending
order) if

For all i, j in 0..A.length – 1: i < j  A[i]  A[j]

Using Java Sorting Methods

• Java API provides a class Arrays with
several overloaded sort methods for
different array types

• The Collections class provides similar
sorting methods
– Sorting methods for arrays of primitive types

are based on the quicksort algorithm

– Sorting methods for arrays of objects and
Lists are based on mergesort

Java Sorting Methods Declaring a Generic Method

CSIS 3103 Fall 2010

ds08-1 2

Selection Sort

A relatively simple algorithm that sorts an
array by making passes through the array,
selecting the smallest remaining item and
placing it where it belongs in the array

– Efficiency is O(n2)

Selection Sort
Basic rule: on each pass select the
smallest remaining item and place it in its
proper location

Selection Sort Algorithm

Number of comparisons is O(n2)

Number of exchanges is O(n)

1.for fill = 0 to n – 2 do
2. Set posMin to the subscript of the smallest item in the subarray

starting at subscript fill
3. Exchange the item at posMin with the one at fill

2.1 for next = fill + 1 to n – 1 do

2.2 if the item at next is less than the item at posMin

2.3 Reset posMin to next

Refining Step 2

Bubble Sort
Compares adjacent array elements and
exchanges their values if they are out of
order

Analysis of Bubble Sort

• Very poor performance in most cases

• Works best when array is nearly sorted to
begin with

• Worst case number of comparisons is O(n2)

• Worst case number of exchanges is O(n2)

• Best case occurs when the array is already
sorted: O(n) comparisons and O(1) exchanges

Insertion Sort
Based on the technique commonly used to
arrange a hand of cards
– Player keeps the cards that have been picked

up so far in sorted order

– When the player picks up a new card, he
makes room for the new card and inserts it in
its proper place

CSIS 3103 Fall 2010

ds08-1 3

Insertion Sort Algorithm
For each array element from the second
(nextPos = 1) to the last
– Insert the element at nextPos where it

belongs in the array, increasing the length of
the sorted subarray by 1

Analysis of Insertion Sort

• Maximum number of comparisons is O(n2)

• Best case number of comparisons is O(n)

• The number of shifts performed during an
insertion is one less than or the same as the
number of comparisons

• A shift in insertion sort requires the moving
only one item whereas in bubble or selection
sort an exchange involves a temporary item
and requires the movement of three items

Comparison of Quadratic Sorts Comparison of Quadratic Sorts

• Insertion sort
– gives the best performance for most arrays
– takes advantage of any partial sorting in the array

and uses less costly shifts

• Bubble sort generally gives the worst
performance—unless the array is nearly sorted

• None of the quadratic search algorithms are very
good for large arrays (n > 1000)

• The best sorting algorithms provide n log n
average case performance

Comparisons versus Exchanges

• In Java objects, an exchange requires a switch of
two object references using a third object
reference as an intermediary

• A comparison requires an execution of a
compareTo method
– The cost of a comparison depends on its complexity,

but is generally more costly than an exchange
• For some languages (and primitives in Java), an

exchange may involve physically moving
information rather than swapping object
references. In these cases, an exchange may be
more costly than a comparison

