CSIS 3103

[o}
(o]
=l
gl
(o]
=l
gl

CSIS 3103

Ch 7: Hash Table Implementations
and Applications

Fall 2010

Interface KWHashMap

V get(Object key) Returns the value associated with the specified key. Returns

nulT if the key is not present.

boolean isEmpty() Returns true if this table contains no key-value mappings.

V put(K key, V value) Associates the specified value with the specified key. Returns
the previous value associated with the specified key, or nu1l

if there was no mapping, for the key.

V remove(Object key) Removes the mapping for this key from this table if it is pres-
ent (optional operation). Returns the previous value associ-

ated with the specified key, or nul1 if there was no mapping.

int sizeQ) Returns the size of the table.

Class HashTableOpen

private Entry<K, V>[] table The hash table array.

private static final int START_CAPACITY The initial capacity.

private double LOAD_THRESHOLD The maximum load factor.

private int numKeys The number of keys in the table excluding keys that were

deleted.

private int numDeletes The number of deleted keys.

private final Entry<K, V> DELETED A special object to indicate that an entry has been deleted.

private K key The key.

private V value The value.

public Entry(K key, V value) Constructs an Entry with the given values.

public K getkeyO Retrieves the key.

public V getvalue) Retricves the value.

public V setValue(V val) Sets the value

Class HashTableOpen

private int find(Object key) Returns the index of the specified key if present in the table;
otherwise, returns the index of the first available slot.

private void rehash() Doubles the capacity of the table and permanently removes

deleted items.

| Algorithm for HashtableOpen. find(Object key)
i

. Set index to key.hashCode() % table.length.
. if index < 0, add table.length.
. while table[index] is not empty and the key is not at table[index]
increment index.
if index 2 table.length
Set index to 0.

Class HashTableOpen

Algorithm for HashtableOpen.get(Object key)

1. Find the first table element that is empty or the table element that contains the key.
2. if the table element found contains the key
return the value at this table element.
3. else
4. return nul l.

Algorithm for HashtableOpen.put(K key, V value)

1. Find the first table element that is empty or the table element that contains
the key.

2. if an empty element was found

3. insert the new item and increment numKeys.

4. check for need to rehash.

5. return null.

6. The key was found. Rep the value
return the old value.

with this table element and

ds07-4

Class HashTableOpen

Algorithm for HashtableOpen.remove(Object key)

1. Find the first table element that is empty or the table element that contains
the key.

2. if an empty element was found

3. return null.

4. Key was found. Remove this table element by setting it to reference

DELETED,
increment numDeletes, and decrement numKeys.

5. Return the value associated with this key.

Algorithm for HashtableOpen.rehash

1. Allocate a new hash table that is double the size and has an odd length.
2. Reset the number of keys and number of deletions to 0.
3. Reinsert each table entry that has not been deleted in the new hash table.

CSIS 3103

Fall 2010

Class HashTableChain

Data Field Attribute

private LinkedList<Entry<K, V>>[] table A table of references to linked lists of Entry<k, V> objects.
private int numKeys The number of keys (entrics) in the table

private static final int CAPACITY The size of the table

private static final int LOAD_THRESHOLD The maximum load factor.

Algorithm for HashtableChain.get(Object key)

1. Set index to key.hashCode() % table.length.
2. if index is negative

3. add table. length.

4. if table[index] is null

5. key is not in the table; return nul I.

6. For each element in the list at table[index]

7. if that element’s key matches the search key
8 return that element’s value.

9. key is not in the table; return nul 1.

Class HashTableChain

Algorithm for HashtableChain.put(K key, V value)

1. Set index to key.hashCode() % table.length.
2. if index is negative, add table.length.

3. if table[index] isnull

4 create a new linked list at table[index] .

5. Search the list at table[index] to find the key.

6. if the search is successful

7 replace the value associated with this key.

8. return the old value.

9.else

10. insert the new key-value pair in the linked list at table[index] -
11. increment numKeys.

12. if the load factor exceeds the LOAD_THRESHOLD

13. Rehash.

14. return null.

Class HashTableChain

Algorithm for HashtableChain.remove(Object key)

1. Set index to key.hashCode() % table.length.
2. if index is negative, add table. length.

3. if table[index] isnull

4. key is not in the table; return nul I.

5. Search the list at table[index] to find the key.

6. i f the search is successful

7 remove the entry with this key and decrement numKeys.
8 if the list at table[index] is empty

9. Set table[index] tonull.

10. return the value associated with this key.

11. The key is not in the table; return nul 1.

Methods hashCode and equals

Object.hashCode calculates an object’s hash
code based on its address, not its contents
Most predefined classes override hashcode
« Java recommends also overriding hashCode if
you override the equals method,
— use the same data field(s) as in equals method

if obj.equals(obj2) is true,
then objl.hashCode == obj2.hashCode

Cell Phone Contact List

Problem

A cell phone manufacturer wants a program to
maintain contact lists on their phones

The manufacturer has provided the interface:

List<String> addOrChangeEntry(String name, Cha umbers associated with the given

List<String> numbers) nams dds a new entry with this name and list
of numbers. Returns the old list of numbers or null

i this is a new entry.

List<String> lookupEntry(String name) Searches the contact list for the given name and
returns its list of numbers or nul1 if the name is
not found.

List<String> removeEntry(String name) Removes the entry with the specified name from
the contact list and returns its list of numbers or
nul1 if the name is not in the contact list.

void display(); Displays the contact list in order by name.

Cell Phone Contact List

Analysis
— A map will associate the name (key) with a
list of phone numbers (value)

— Implement ContactListInterface by using a
Map<String, List<String>> object for the data

type

ds07-4

