
CSIS 3103 Fall 2010

ds07-4 1

CSIS 3103

Ch 7: Hash Table Implementations
and Applications

2

3

0

1

6

7

4

5

10

8

9

Interface KWHashMap

Class HashTableOpen Class HashTableOpen

Algorithm for HashtableOpen.find(Object key)

1. Set index to key.hashCode() % table.length.
2. if index < 0, add table.length.
3. while table[index] is not empty and the key is not at table[index]
4. increment index.
5. if index ≥ table.length
6. Set index to 0.
7. Return the index.

Class HashTableOpen
Algorithm for HashtableOpen.get(Object key)

1. Find the first table element that is empty or the table element that contains the key.
2. if the table element found contains the key

return the value at this table element.
3. else
4. return null.

Algorithm for HashtableOpen.put(K key, V value)

1. Find the first table element that is empty or the table element that contains
the key.

2. if an empty element was found
3. insert the new item and increment numKeys.
4. check for need to rehash.
5. return null.
6. The key was found. Replace the value associated with this table element and

return the old value.

Class HashTableOpen

Algorithm for HashtableOpen.remove(Object key)

1. Find the first table element that is empty or the table element that contains
the key.

2. if an empty element was found
3. return null.
4. Key was found. Remove this table element by setting it to reference
DELETED,

increment numDeletes, and decrement numKeys.
5. Return the value associated with this key.

Algorithm for HashtableOpen.rehash

1. Allocate a new hash table that is double the size and has an odd length.
2. Reset the number of keys and number of deletions to 0.
3. Reinsert each table entry that has not been deleted in the new hash table.

CSIS 3103 Fall 2010

ds07-4 2

Class HashTableChain

Algorithm for HashtableChain.get(Object key)

1. Set index to key.hashCode() % table.length.
2. if index is negative
3. add table.length.
4. if table[index] is null
5. key is not in the table; return null.
6. For each element in the list at table[index]
7. if that element’s key matches the search key
8. return that element’s value.
9. key is not in the table; return null.

Class HashTableChain

Algorithm for HashtableChain.put(K key, V value)

1. Set index to key.hashCode() % table.length.
2. if index is negative, add table.length.
3. if table[index] is null
4. create a new linked list at table[index].
5. Search the list at table[index] to find the key.
6. if the search is successful
7. replace the value associated with this key.
8. return the old value.
9. else
10. insert the new key-value pair in the linked list at table[index].
11. increment numKeys.
12. if the load factor exceeds the LOAD_THRESHOLD
13. Rehash.
14. return null.

Class HashTableChain

Algorithm for HashtableChain.remove(Object key)

1. Set index to key.hashCode() % table.length.
2. if index is negative, add table.length.
3. if table[index] is null
4. key is not in the table; return null.
5. Search the list at table[index] to find the key.
6. if the search is successful
7. remove the entry with this key and decrement numKeys.
8. if the list at table[index] is empty
9. Set table[index] to null.
10. return the value associated with this key.
11. The key is not in the table; return null.

Methods hashCode and equals

Object.hashCode calculates an object’s hash
code based on its address, not its contents

Most predefined classes override hashcode

• Java recommends also overriding hashCode if
you override the equals method,
– use the same data field(s) as in equals method
if obj.equals(obj2) is true,
then obj1.hashCode == obj2.hashCode

Cell Phone Contact List

Problem
A cell phone manufacturer wants a program to
maintain contact lists on their phones

The manufacturer has provided the interface:

Cell Phone Contact List

Analysis
– A map will associate the name (key) with a

list of phone numbers (value)

– Implement ContactListInterface by using a
Map<String, List<String>> object for the data
type

