
CSIS 3103 Fall 2010

ds07-3 1

CSIS 3103
Ch 7: Hashing

2

3

0

1

6

7

4

5

10

8

9

Collision Resolution

Collisions are nearly inevitable

• How to deal with two keys that map to the 
same cell?

• We'll consider two ways to organize hash 
tables to handle collisions
– Open addressing

– Chaining

Open Addressing

• Requires:
A table with more cells than the expected 
number of items

• Put one item in each bucket

• Research has shown that using a prime 
number for table size gives a better 
distribution of indices

Collisions with Linear Probing

Resolving collisions in open-address 
hashing:
– Linear probing: If h(key) produces a collision, 

try h(k) + 1, h(k) + 2, … until an empty cell 
(null) is found (wrap around at end)

• If the table gets close to being full, 
performance degrades

• A solution is rehashing: making a bigger hash table 
and moving the entries into it

Open Addressing with Linear 
Probing

Hash Code Insertion Example 1

Name hashCode() hashCode()%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Tom Dick Harry Sam Pete

table.length = 5

Values to insert:



CSIS 3103 Fall 2010

ds07-3 2

Hash Code Insertion Example 2

Name hashCode() hashCode()%11

"Tom" 84274 3

"Dick" 2129869 5

"Harry" 69496448 10

"Sam" 82879 5

"Pete" 2484038 7

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

Tom Dick Harry Sam Pete

Values to insert:

table.length = 11

Deleting an Item Using Open 
Addressing

You cannot simply set a deleted table entry 
to null

• Think about searching for an item that 
may have collided with the deleted item

Instead, mark the location as available but 
previously occupied

• Deleted items waste storage space and 
reduce search efficiency

Collisions Handling Alternatives
• Linear probing tends to form clusters of 

keys, causing longer search chains

• Other methods for handling collisions in 
open-address hashing, for example

Quadratic probing – add square of increment 
values: h(k) + 12, h(k) + 22, h(k) + 32, … 

• But now, the usual way to implement hash 
tables is chaining…

Chaining (Closed addressing)

• Create a table of m buckets

• Each bucket references a linked list () that 
contains all of the items that hash to the 
same table index

• Only items that have the same value for 
their hash codes will be examined when 
looking for an object

Chaining Performance of Hash Tables

Load factor: The number of filled cells 
divided by the table size
The lower the load factor, the better the 
performance 
• Smaller chance of collisions when a table 

is sparsely populated
If there are no collisions, performance for 
search and retrieval is O(1) regardless of 
table size



CSIS 3103 Fall 2010

ds07-3 3

Performance Comparisons

Average number of comparisons with load factor L

Open addressing: Chaining:

ܿ ൌ 	 ଵଶ ሺ1 ൅	 ଵଵ	ି௅) ܿ ൌ 1 ൅	2ܮ
(L = avg # items per list)


