CSIS 3103 Fall 2010

8l Collision Resolution
gl
[o]
E! Collisions are nearly inevitable
* How to deal with two keys that map to the
same cell?
CSIS 3103 » We'll consider two ways to organize hash
) . tables to handle collisions
Ch7: HaShmg — Open addressing
— Chaining
Open Addressing Collisions with Linear Probing
* Requires: Resolving collisions in open-address
A table with more cells than the expected hashing:
number of ite_mS — Linear probing: If h(key) produces a collision,
* Put one item in each bucket try h(k) + 1, h(k) + 2, ... until an empty cell
« Research has shown that using a prime (null) is found (wrap arouhd atend)
number for table size gives a better « If the table gets close to being full,

performance degrades

« A solution is rehashing: making a bigger hash table
and moving the entries into it

distribution of indices

Open Addressing with Linear Hash Code Insertion Example 1
Probing

Values to insert: Name hashCode() | hashCode()%5

gorithm for A ccessing an Item in a Hash Table

Tom Dick Harry Sam Pete

1. Compute the index by taking the item’s hashCode() % table.length "Tom" 84274 4
2. if table[index] is null "Dick" 2129869 4
3 The item is not in the table. " -
4. else if table[index] is equal to the item [0] L6y 6920608 g
5. The item is in the table. (1] SenP 82879 4
else [2] "Pete" 2484038 3
6. Continue to search the table by incrementing the index until either the 3]
item is found or a nu11 entry is found. 4

table.length = 5

ds07-3 1



CSIS 3103

Fall 2010

Hash Code Insertion Example 2

Values to insert:

Tom Dick Harry Sam Pete [0
(1]

[2]

Name hashCode() | hashCode()%11 3l

“Tom" 84274 3 5

"Dick" 2129869 5 {2}

"Harry" 69496448 10 Iyl
"Sam" 82879 5 [8]

"Pete” | 2484038 7 19

[10]

table.length = 11

Deleting an Item Using Open
Addressing

You cannot simply set a deleted table entry

to null

« Think about searching for an item that
may have collided with the deleted item

Instead, mark the location as available but

previously occupied

» Deleted items waste storage space and
reduce search efficiency

Collisions Handling Alternatives

« Linear probing tends to form clusters of
keys, causing longer search chains
» Other methods for handling collisions in
open-address hashing, for example
Quadratic probing — add square of increment
values: h(k) + 12, h(k) + 22, h(k) + 32, ...
< But now, the usual way to implement hash
tables is chaining...

Chaining (Closed addressing)

* Create a table of m buckets

« Each bucket references a linked list () that
contains all of the items that hash to the
same table index

* Only items that have the same value for
their hash codes will be examined when
looking for an object

Chaining

O mumi | next = nex
null / data = "Harry" data = "Pete"

]

[T |/
It ]

|

next — next null

next
data “Tom™ data "Dick" data "Sam"

Performance of Hash Tables

Load factor: The number of filled cells

divided by the table size

The lower the load factor, the better the

performance

« Smaller chance of collisions when a table
is sparsely populated

If there are no collisions, performance for

search and retrieval is O(1) regardless of

table size

ds07-3




CSIS 3103 Fall 2010

Performance Comparisons
Average number of comparisons with load factor L
Open addressing: Chaining:
(L = avg # items per list)
C=%(1+i) C=1+£
2
L Number of Probes with Linear Probing Number of Probes with Chaining

0.0 1.00 1.00
0.25 1.17 1.13
0.5 1.50 1.25
0.75 2.50 1.38
0.85 3.83 1.43
0.9 5.50 1.45
0.95 10.50 1.48

ds07-3 3



