
CSIS 3103 Fall 2010

ds07-2 1

CSIS 3103
Hashing

2

3

0

1

6

7

4

5

10

8

9

Hash Tables

Goal: Access an entry based on its key
(no searching to determine its location)

Using a hash table enables us to retrieve an
item in

– constant time (on average)

– linear (worst case)

A Lookup Problem
A phone company wants to provide
caller ID capability
– given a phone number, return the

caller's name

Phone numbers look like:

999-999-9999

Could be represented as integers in the range
0..R where R = 1010 – 1

… lots of these are not actually used

Solutions we've seen so far

• Linear search: O(N)

• Binary search: O(log N)

I have a data structure where the
key is found on the first attempt

every time!

000-000-0000

The Ultimate Solution

An array indexed by the phone number

– The search time is optimal, O(1)

– But the space required is huge, O(R)

(null)

609-652-4587000-000-0001 999-999-9999

(null) Olan (null)

… …

… …

Another Solution

• We need to reduce the number of cells in
the array

• Many of the 10-digit numbers cannot be
used as phone numbers anyway

• A hash table is an alternative which has
O(1) expected search time (not worst-case)
but with a reduced space requirement

CSIS 3103 Fall 2010

ds07-2 2

Example

• Suppose we pick a table of size N = 5
• We can map the phone number (key) to a

slot in the table by calculating

index = key mod 5

6096524587 mod 5 = 2

0 1 2 3 4

609-652-4587
Olan

609-652-4587
Olan

Example
Lookup uses the same process:

Map the key to an index and check the array
cell at that index

• Next, insert (609-404-1230, Somebody)

• Then insert (609-643-8362, Whozit)
Oops, a collision occurs at index = 2

0 1 2 3 4

609-652-4587
Olan

510-643-1230
Somebody

Hashing
• Recall binary search's success is based

on divide-and-conquer
– divide the data set size in half at every step

• Hashing divides the set of keys into m
roughly equal sized subsets (buckets)

• Search time is reduced to a value
proportional to n/m on average, where n is
the total number of data items

• What we need is a way to quickly pick the
subsets where the keys will be put

Hash Codes and Index
Calculation

The basis of hashing is to transform an
item’s key into an integer value which will
then be transformed into a table index

Hash function

Hash Codes and Index Calculation
h(key)  index in array

• A "good" hash function minimizes the
probability of collisions

• The Java Object class defines a
hashCode() method that returns an
int for any object Object.hashCode()

• To use a hashcode as an index, it must
be in the range 0  h < m (table size)

int h = key.hashCode() % table.length;

Generating Hash Codes

• The number of possible key values is
much larger than the table size

• Generating good hash codes is somewhat
of an experimental process

• The hash function should generate a
uniform random distribution of its values,
and be relatively efficient to compute

CSIS 3103 Fall 2010

ds07-2 3

Java HashCode Method
• For strings, summing the int values of all

characters doesn't work well
– Consider the hash codes for sign and sing

• String.hashCode() uses the formula:
s0 x 31(n-1) + s1 x 31(n-2) + … + sn-1

where si is the ith character of the string, and
n is the length of the string

"Cat" has a hash code of:
‘C’ x 312 + ‘a’ x 31 + ‘t’ = 67510

Java HashCode Method

The String.hashCode method distributes the
hash code values fairly evenly
• The probability of two strings having the

same hash code is low

The probability of a collision with
s.hashCode() % table.length

is proportional to how full the table is

