CSIS 3103

VAL
CSIS 3103
Ch 6: Binary trees,

Tree traversals,
Binary search trees

Fall 2010

Tree Traversals

Often we want to process some or all of
the nodes of a tree

Tree traversal: Walking through the tree in a
prescribed order and visiting the nodes as
they are encountered

Three kinds of tree traversal
* Inorder
* Preorder
* Postorder

Binary Tree Traversals

Preorder: Visit root node, traverse T, traverse T
Inorder: Traverse T, visit root node, traverse Ty
Postorder: Traverse T, Traverse T, visit root node

AIgorithm for \lgorithm gorithm for
Preorder Traversal Inorder Traversal torder Traversal
1. if the tree is empry 1. 4fthe tree is empty 1. if the tree is empty
2 Return 2 Return. 2 Return
else else else
3. Visit the root 3. Inorder traverse the 3 Postorder traverse the
4 Preorder traverse the lefe subtree. left subtree.
lefr subtree. 4 Visit the root 4. Postorder traverse the
5 Preorder traverse the S Inorder traverse the right subtree.
right subtree. right subtree. s Visit the root.

Visualizing Tree Traversals

Visualize a tree traversal by imagining
walking along the branches of the tree
— If you always keep the tree to the left, you will
trace a route known as the Euler tour
« Preorder traversal processes each node is when it
is first seen
« Inorder processes each node when returning from
traversing its left subtree

« Postorder processes each node when it is last
seen

Visualizing Tree Traversals

ds06-2

Traversals of Expression Trees

¢ An inorder traversal of an expression tree
inserts parenthesis where they belong for
infix form

« A postorder traversal of an expression tree
results in postfix form

CSIS 3103

The Node<E> Class
(Binary Tree)

A node consists of a data part and links to
successor nodes (its left and right
subtrees)

=),

left = [—=—=—

right = ——
data - =~

,_

Fall 2010

Binary Tree for an Expression

left = null left = null left = null Teft = null
right = null right = null right = null right = null
data = 'x' data = 'y data = 'a’ data = 'b'

The BinaryTree<E> Class

Data Field

protected Node<tE> root efere: 1o D

public BinaryTree()

protected BinaryTree(Node<E> root)

public BinaryTree(E data, BinaryTree<E>
leftTree, BinaryTree<E> rightTree)

public BinaryTree<E> getLeftSubtree() R

public BinaryTree<E> getRightSubtree() R

public E getData() R

public boolean isLeaf() Returns true if this tr af, false otherwise.

public String toString() Returns a String f the tr

private void preOrderTraverse(Node<E> Performs a pre root

node, int depth, StringBuilder sb) node. Append gBuilder.
Increments the f depth (the current tree level).

public static BinaryTree<E> Constructs a binary tree by reading its data using

readBinaryTree(Scanner scan) Scanner scan.

Binary Search Trees

A set of nodes T is a binary search tree if

either of the following is true

- Tis empty

— Its root has two subtrees such that each is a
binary search tree and the value in the root is
greater than all values of the left subtree but
less than all values in the right subtree

Binary Search Trees

all ate

ds06-2

Searching a Binary Search Tree

hou Trat
cow jnck milked that
buile dog s killed malt piekt shom wssed
) / / \
and cock crumpled fodom in kept kissed maiden man mom shaven mtwered this with
A N / A\ \ \
[\ /\ / /\ \ \
cat com crowed farmerhorn married sowing the torn wakedworried

