

• Recursion is often used to process trees

Trees

Chapter 6 looks at

- binary trees
- binary search trees
- heaps

Binary search trees in particular are good for storing sorted data so that it can be efficiently retrieved

Tree Terminology

- A tree consists of a collection of elements (*nodes*). Each node is linked to its successors.
- Root: The node at the top of a tree
- *Branches:* The links from a node to its successors
- Children: The successors of a node
- Parent: The predecessor of a node

Each node in a tree has exactly one parent except for the root node, which has no parent

Leaf node: A node that has no children Siblings: Nodes that have the same parent

Recursive Definition of Tree

A *tree* T is either the empty set or a pair T = (r, S), where r is an object and S is a set of disjoint trees. The object r is called the *root* of the tree T, and

the elements of the set *S* are *subtrees* of the root.

Recursive Definition of Binary Tree

A binary *tree* T is either empty or consists of an object x and disjoint binary trees T_L and T_R The object x is the *root* of the tree T, T_L is the *left subtree* and T_R is the *right subtree* of the root

Examples of Binary Trees

Expression tree: Each node contains an operator or an operand

Huffman tree: Represents Huffman codes for characters that might appear in a text file (for file compression)

Binary search trees: All elements in the left subtree precede those in the right subtree

CSIS 3103

